L. Wang et al. / Journal of Solid State Chemistry 183 (2010) 2576–2581
2581
nanoplates also had larger specific surface area and in favor of the
contact with the electrolyte.
Based on these results, it is believed that the NiO with a hollow
sphere composed of nanoparticles morphology is a good electrode
material in supercapacitor field.
[3] A. Tao, F. Kim, C. Hess, J. Goldberger, R.R. He, Y.G. Sun, Y.N. Xia, P.D. Yang,
Nano Lett. 3 (2003) 1229–1233.
[4] T.L. Sounart, J. Liu, J.A. Voigt, J.W.P. Hsu, E.D. Spoerke, Z. Tian, Y.B. Jiang, Adv.
Funct. Mater. 16 (2006) 335–344.
[5] Z.R. Tian, J. Liu, J.A. Voigt, B. Mckenzie, H.F. Xu, Angew. Chem. Int. Ed. 42
2003) 413–417.
(
[6] T.Y. Kim, J.Y. Kim, S.H. Lee, H.W. Shim, S.H. Lee, E.K. Suh, K.S. Nahma, Synth.
Met. 144 (2004) 61–68.
[
[
[
7] D.S. Wang, R. Xu, X. Wang, Y.D. Li, Nanotechnology 17 (2006) 979–983.
8] M.A. Gondal, M.N. Sayeed, Z. Seddigi, J. Hazard. Mater. 155 (2008) 83–89.
9] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000)
4
. Conclusions
4
96–499.
NiO hollow spheres obtained by calcining the Ni(OH)
2
[
10] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Thin Solid Films 418
precursor in a rapid combustion process. The results indicated
that the glucose and the reaction temperature would affect the
product morphology. NiO hollow spheres composed of nanopar-
ticles are easy to form by adding glucose and keeping the reaction
temperature at 140 1C under the hydrothermal conditions.
Charge/discharge test results showed that the as-prepared NiO
hollow spheres composed of nanoparticles exhibited a higher
discharge capacity, which might serve as an ideal electrode
material for supercapacitor due to the spherical hollow structure.
(2002) 9–15.
[11] F. Li, H.Y. Chen, C.M. Wang, K.A. Hu, J. Electroanal. Chem. 531 (2002)
3–60.
5
[
[
12] G.A. Niklasson, C.G. Granqvist, J. Mater. Chem. 17 (2007) 127–156.
13] S.G. Kim, S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, Electrochim.
Acta 49 (2004) 3081–3089.
[
[
[
14] D.Y. Han, H.Y. Yang, C.B. Shen, X. Zhou, F.H. Wang, Powder Technol. 147
(2004) 113–116.
15] C.K. Xu, K.Q. Hong, S. Liu, G.H. Wang, X.N. Zhao, J. Cryst. Growth 255 (2003)
308–312.
16] Y.J. Zhan, C.R. Yin, C.L. Zheng, W.Z. Wang, G.H. Wang, J. Solid State Chem. 177
(2004) 2281–2284.
[
[
17] H.A. Pang, Q.Y. Lu, Y.Z. Zhang, Y.C. Li, F. Gao, Nanoscale 2 (2010) 920–922.
18] W.Z. Wang, Y.K. Liu, C.K. Xu, C.L. Zheng, G.H. Wang, Chem. Phys. Lett. 362
(2002) 119–122.
Acknowledgments
[
[
[
19] Z.H. Liang, Y.J. Zhu, X.L. Hu, J. Phys. Chem. B 108 (2004) 3488–3491.
20] S.A. Needham, G.X. Wang, H.K. Liu, J. Power Sources 159 (2006) 254–257.
21] X.M. Ni, Y.F. Zhang, D.Y. Tian, H.G. Zheng, X.W. Wang, J. Cryst. Growth 306
(2007) 418–421.
This work is financially supported by the National Natural
Science Foundation of China (Grant 20701029). The authors are
grateful to X.Y. Ji and X.Y. Zhang at Analytical and Testing Center
in Sichuan University for XRD and SEM measurements.
[
[
22] M. Zhang, G.J. Yan, Y.G. Hou, C.H. Wang, J. Solid State Chem. 182 (2009)
1
206–1210.
23] L. Liu, Y. Li, S.M. Yuan, M. Ge, M.M. Ren, C.S. Sun, Z. Zhou, J. Phys. Chem. C 114
2010) 251–255.
(
[
[
[
24] X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed. 43 (2004) 3827–3831.
25] X.L. Li, T.J. Lou, X.M. Sun, Y.D. Li, Inorg. Chem. 43 (2004) 5442–5449.
26] M.M. Titirici, M. Antonietti, A. Thomas, Chem. Mater. 18 (2006) 3808–3812.
References
[
[
1] B. Lim, M.J. Jiang, J. Tao, P.H.C. Camargo, Y.M. Zhu, Y.N. Xia, Adv. Funct. Mater.
9 (2009) 189–200.
2] N.N. Zhao, Y. Wei, N.J. Sun, Q. Chen, J.W. Bai, L.P. Zhou, Y. Qin, M.X. Li, L.M. Qi,
Langmuir 24 (2008) 991–998.
[27] L.P. Xu, Y.S. Ding, C.H. Chen, L.L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, Chem.
Mater. 20 (2008) 308–316.
[28] S. Venka, W. John, J. Electrochem Soc. 147 (2000) 880–885.
[29] C.C. Hu, T.W. Tsou, J. Power Sources 115 (2003) 179–186.
1