J. Zhong et al. / Journal of Alloys and Compounds 509 (2011) 3889–3893
3893
[6] C. Li, Z.S. Yu, S.M. Fang, H.X. Wang, Y.H. Gui, J.P. Xu, R.F. Chen, J. Alloys Compd.
475 (2009) 718.
[7] Q.T. Pan, K. Huang, S.B. Ni, F. Yang, S.M. Lin, D.Y. He, J. Alloys Compd. 484 (2009)
322.
[8] Y.J. Chen, M.C. Hsu, Y.C. Cai, J. Alloys Compd. 490 (2010) 493.
[9] K.F. Chen, Z. Lue, X.J. Chen, N. Ai, X.Q. Huang, B. Wei, J.Y. Hu, W.H. Su, J. Alloys
Compd. 454 (2008) 447.
0.6
0.4
2.28 V
1.47 V
0.2
[10] H.B. Wang, Q.M. Pan, J.W. Zhao, W.T. Chen, J. Alloys Compd. 476 (2009) 408.
[11] E. Hosono, S. Fujihara, I. Honma, H.S. Zhou, Electrochem. Commun. 8 (2006)
284.
[12] X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang, L. Zhang, Y. Zhou, J. Power
Sources 188 (2009) 588.
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
[13] X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang, Electrochem. Commun. 10
(2008) 1288.
[14] Y. Wang, Q.Z. Qin, J. Electrochem. Soc. 149 (2002) A873.
[15] Y. Wang, Y.F. Zhang, H.R. Liu, S.J. Yu, Q.Z. Qin, Electrochim. Acta 48 (2003) 4253.
[16] B. Varghese, M.V. Reddy, Y.W. Zhu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R.
Chowdari, A.T.S. Wee, C.T. Lim, C.H. Sow, Chem. Mater. 20 (2008) 3360.
[17] Y.N. Nuli, S.L. Zhao, Q.Z. Qin, J. Power Sources 114 (2003) 113.
[18] K.F. Chiu, C.Y. Chang, C.M. Lin, J. Electrochem. Soc. 152 (2005) A1188.
[19] H.B. Wang, Q.M. Pan, X.P. Wang, G.P. Yin, J.W. Zhao, J. Appl. Electrochem. 39
(2009) 1597.
1.0 V
1.0
0.0
0.5
2.0
2.5
3.0
Potential (V vs. Li+/Li)
[20] Q.M. Pan, J. Liu, J. Solid State Electrochem. 13 (2009) 1591.
[21] A.A. Al-Ghamdi, W.E. Mahmoud, S.J. Yaghmour, F.M. Al-Marzouki, J. Alloys
Compd. 486 (2009) 9.
Fig. 7. Cyclic voltammograms of the NiO film electrodes at a scan rate of 0.5 mV s−1
[22] X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan, H.M. Wu, Electrochim. Acta
52 (2007) 4177.
retention of the film [49]. What’s more the nickel foam substrate
leads to much more active material comparing with the metal-foil
substrate [50]. As a result, this sandwich-like NiO film has potential
application in the field of attractive power sources.
[23] X.H. Huang, J.P. Tu, C.Q. Zhang, J.Y. Xiang, Electrochem. Commun. 9 (2007) 1180.
[24] F. Davar, Z. Fereshteh, M. Salavati-Niasari, J. Alloys Compd. 476 (2009) 797.
[25] M. Salavati-Niasari, F. Davar, Z. Fereshteh, J. Alloys Compd. 494 (2010) 410.
[26] A.C. Sonavane, A.I. Inamdar, P.S. Shinde, H.P. Deshmukh, R.S. Patil, P.S. Patil, J.
Alloys Compd. 489 (2010) 667.
[27] X.H. Huang, J.P. Tu, Z.Y. Zeng, J.Y. Xiang, X.B. Zhao, J. Electrochem. Soc. 155
(2008) A438.
4. Conclusions
[28] X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang, L. Zhang, J. Power Sources
195 (2010) 1207.
[29] H.R. Liu, W.M. Zheng, X. Yan, B.X. Feng, J. Alloys Compd. 462 (2008) 356.
[30] T.-L. Lai, Y.-Y. Shu, G.-L. Huang, C.-C. Lee, C.-B. Wang, J. Alloys Compd. 450 (2008)
318.
NiO film with regular triangular prisms was grown on the
nickel foam substrate by a facile ammonia-evaporation method.
The single-crystalline NiO nanoplates pile up together and form
sandwich-like structures with the bottom sticking to the substrate.
The ammonia plays the major role in controlling the sandwich-like
structure during the self-assembly growth process. The resultant
NiO film exhibits high rate capability and coulombic efficiency, as
well as good cycling performance, indicating that this sandwich-
like film would be a potential electrode for the next-generation
lithium ion batteries. Moreover, the ammonia-evaporation fabri-
cation of the Ni(OH)2 and NiO films provide a promising approach
to preparing 3d transition metal hydroxide/oxide thin-film elec-
trodes.
[31] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, J. Am. Chem. Soc. 132 (2010)
7472.
[32] K. Matsui, T. Kyotani, Adv. Mater. 14 (2002) 1216.
[33] L.H. Zhuo, J.C. Ge, L.H. Cao, B. Tang, Cryst. Growth Des. 9 (2009) 1.
[34] D.N. Yang, R.M. Wang, J. Zhang, Z.F. Liu, J. Phys. Chem. B 108 (2004) 7531.
[35] P. Zhang, Z.P. Guo, S.G. Kang, Y.J. Choi, C.J. Kim, K.W. Kim, H.K. Liu, J. Power
Sources 189 (2009) 566.
[36] X.H. Huang, J.P. Tu, C.Q. Zhang, F. Zhou, Electrochim. Acta 55 (2010) 8981.
[37] J.B. Sanjeev Das, Y.C. Seol, C.G. Kim, Park, J. Alloys Compd. 505 (2010) L19.
[38] L. Wang, Y. Zhao, Q.Y. Lai, Y.J. Hao, J. Alloys Compd. 495 (2010) 82.
[39] Q.L. Zhou, F. Gu, C.Z. Li, J. Alloys Compd. 474 (2009) 358.
[40] X. Ni, Y. Zhang, D. Tian, H. Zheng, X. Wang, J. Cryst. Growth 306 (2007) 418.
[41] C. Coudun, J.F. Hochepied, J. Phys. Chem. B 109 (2005) 6069.
[42] S.M. Zhang, H.C. Zeng, Chem. Mater. 21 (2009) 871.
[43] W. Zhou, M. Yao, L. Guo, Y.M. Li, J.H. Li, S.H. Yang, J. Am. Chem. Soc. 131 (2009)
2959.
References
[44] S.A. Needham, G.X. Wang, H.K. Liu, J. Power Sources 159 (2006) 254.
[45] Y.G. Li, B. Tan, Y.Y. Wu, Chem. Mater. 20 (2008) 567.
[46] X.Y. Deng, Z. Chen, Mater. Lett. 58 (2004) 276.
[47] D.B. Kuang, B.X. Lei, Y.P. Pan, X.Y. Yu, C.Y. Su, J. Phys. Chem. C 113 (2009) 5508.
[48] G.W. Brindley, S. Kikkawa, Am. Miner. 64 (1979) 836.
[49] J.C. Park, J. Kim, H. Kwon, H. Song, Adv. Mater. 21 (2009) 803.
[50] Y. Yu, C.H. Chen, J.L. Shui, S. Xie, Angew. Chem. Int. Ed. 44 (2005) 7085.
[1] P. Piozit, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000)
496.
[2] J.-M. Tarascon, M. Armand, Nature 414 (2001) 359.
[3] S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.-M. Tarascon,
J. Electrochem. Soc. 148 (2001) A285.
[4] D. Larcher, G. Sudant, J.-B. Leriche, Y. Chabre, J.-M. Tarascon, J. Electrochem. Soc.
149 (2002) A234.
[5] P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarascon, J. Electrochem. Soc. 149 (2002)
A1212.