H.A. Juybari et al. / Journal of Alloys and Compounds 509 (2011) 2770–2775
2775
and various Li-doping levels have been investigated. It is observed
that the physical properties of films strongly depend on the depo-
sition conditions and Li-doping levels. The obtained results lead to
the following conclusions:
(
1) The prepared films exhibit a preferential growth along the
1 1 1) direction with a cubic NiO phase. With increasing the
(
Ni concentration in precursor solution and substrate tempera-
ture, the (1 1 1) peak intensity is enhanced and crystallite size
increases. Also, at 60 at%, 80 at% and 100 at% Li doping levels,
other phases such as Ni O3 and NiCl2 are observed.
2
(
2) Electrical measurements of the samples show that the sheet
resistance of the films decreases with increasing Ni concen-
◦
tration up to 0.1 M and substrate temperature up to 450 C.
Also, the lowest resistance was obtained to be 4.7 (Mꢃ/ꢀ) for
doping level of 50 at%. The Hall effect and thermoelectrical mea-
surements have shown p-type conductivity in all films. The
highest Seebeck coefficient was 503 V/K at 400 K for 50 at%
Li-doping.
(
3) The transparency of the films decreases with increasing Ni
concentration and increases with increasing the substrate tem-
perature. In case of (Li:Ni)Ox alloy films, transparency decreases
from ∼80% to ∼50% when the doping level increases from 0 at%
to 100 at%.
References
[
[
[
[
[
[
[
1] Z.Q. Li, J.J. Lin, J. Appl. Phys. 96 (2004) 5918–5920.
2] C.G. Granqvist, A. Hultaker, Thin Solid Films 411 (2002) 1.
3] H. Hosono, Thin Solid Films 515 (2007) 6000–6014.
4] Y. Hoshi, T. Kiyomura, Thin Solid Films 411 (2002) 36–41.
5] J. Zhao, L. Hu, W. Liu, Z. Wang, Appl. Surf. Sci. 253 (2007) 6255–6258.
6] C. Körber, P. Agoston, A. Klein, Sens. Actuators B 139 (2009) 665–672.
7] M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, S. Yamada, Jpn. J. Appl.
Phys. 33 (1994) 6656.
[
[
8] I.M. Chan, F.C. Hong, Thin Solid Films 450 (2004) 304.
9] H. Kumagai, M. Matsumoto, K. Toyoda, M. Obava, J. Mater. Sci. Lett. 15 (1996)
1
081.
10] J. Bandara, C.M. Divarathne, S.D. Nanayakkara, Sol. Energy Mater. Sol. Cells 81
2004) 429.
[
(
[
[
[
[
11] R.K. Gupta, K. Ghosh, P.K. Kahol, Physica E 41 (2009) 617–620.
12] G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 105 (2001) 3039.
13] J.D. Desai, S.K. Min, K.D. jung, O.S. Joo, Appl. Surf. Sci. 253 (2006) 1781–1786.
14] D.P. Joseph, M. Saravanan, B. Muthuraaman, P. Renugambal, S. Sambasivam,
S.P. Raja, P. Maruthamuthu, C. Venkateswaran, Nanotechnology 19 (2008)
4
85707.
15] U.S. Joshi, Y. Matsumoto, K. Itaka, M. Sumia, H. Koinuma, Appl. Surf. Sci. 252
2006) 2524–2528.
16] Y. Nakamura, H. Ogawa, T. Nakashima, A. Kishimito, H. Yanagida, J. Am. Ceram.
Soc. 80 (1997) 1609.
[
[
[
(
17] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 445
(
2003) 317.
[
[
[
18] J.W. Lee, I.H. Park, C.W. Chung, Integr. Ferroelectr. 74 (2005) 71.
19] H.L. Chena, Y.M. Lub, W.S. Hwang, Surf. Coat. Technol. 198 (2005) 138–142.
20] D. Franta, B. Negulescu, L. Thomas, P.R. Dahoo, M. Guyot, I. Ohlídal, J. Mistrík, T.
Yamaguchi, Appl. Surf. Sci. 244 (2005) 426–430.
Fig. 7. Plots of (˛hꢂ)2 versus hꢂ (photon energy) for: (a) undoped NiO films prepared
with different Ni concentration in solution (Tsub = 450 C), (b) undoped samples
deposited at different substrate temperature (Ni concentration = 0.1 M), and (c) Li-
doped NiO films with different doping levels.
◦
[21] H. Sato, T. Minami, S. Tanaka, T. Yamada, Thin Solid Films 236 (1993) 27.
[22] K. Nishita, A. Koma, K. Saiki, J. Vac. Sci. Technol. A 19 (2001) 2282.
[
[
[
23] R.C. Korosec, P. Bukovec, Acta. Chim. Slov. 53 (2006) 136–147.
24] P.S. Patil, L.D. Kadam, Appl. Surf. Sci. 199 (2002) 211–221.
25] L. Cattin, B.A. Reguig, A. Khelil, M. Morsli, K. Benchouk, J.C. Bernede, Appl. Surf.
Sci. 254 (2008) 5814–5821.
[
3
(
31,32]. The optical band gap of (Li:Ni)Ox alloy films decrease from
.647 eV to 3.580 eV, which is related to the grain size increase
Fig. 7(c)).
[
[
[
[
[
[
[
26] M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M.
Shokooh-Saremi, Solid State Sci. 11 (2009) 233–239.
27] M.-M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M.
Shokooh-Saremi, Physica B 403 (2008) 2431–2437.
28] S.A. Mahmud, A.A. Akl, H. Kamal, K. Abdel-Hady, Physica B 311 (2002)
4
. Conclusions
366–375.
29] H. Kamal, E.K. Elmaghraby, S.A. Ali, K. Abdel-Hady, J. Cryst. Growth 262 (2004)
424–434.
In this paper, we report the preparation and characterization of
30] E.G. Birgin, I. Chambouleyron, J.M. Martínez, J. Comput. Phys. 151 (1999)
undoped NiO and (Li:Ni)Ox alloy thin films. These films have been
deposited on glass substrates by spray pyrolysis technique. Physical
properties of prepared undoped films with different nickel con-
centrations in precursor solution, different substrate temperatures,
862–880.
31] A.F. Aktaruzzaman, G.L. Sharma, L.L. Malhotra, Thin Solid Films 198 (1991)
67–74.
32] P. Puspharajah, S. Radhakrishna, A.K. Arof, J. Mater. Sci. 32 (1997) 3001–3006.