Angewandte Chemie International Edition
10.1002/anie.201810782
COMMUNICATION
(
Figure 1). Therefore, the complexed boryl radical D is best Acknowledgements
described by resonance structure E, which certainly also
influences its reactivity. In fact, I-transfer from CH I to the C-atom
3
We thank the European Research Council (ERC Advanced Grant
agreement No. 692640) for financial support.
in E to give F proceeds via a low barrier (9.5 kcal/mol), whereas
the barrier for I-transfer to the B-atom leading directly to G occurs
at significantly higher barrier (18.3 kcal/mol) (Figure 2). In a polar
solvent, however, iodide F is not stable and easily isomerizes (ΔG
Keywords: borylation • metal-free • alkyl Iodides • aryl iodides •
radical process
=
3
-8 kcal/mol) to the zwitterion G. The barrier in vacuum is only
.7 kcal/mol, but becomes negative when solvation energies are
included. Thus, F is most likely not a minimum structure under
[
1]
a) A. Suzuki, Acc. Chem. Res. 1982, 15, 178; b) N. Miyaura, A. Suzuki,
Chem. Rev. 1995, 95, 2457; c) Metal-Catalyzed Cross-Coupling
Reactions (Ed.: A. D. Meijere), 2nd ed., Wiley-VCH, Weinheim, 2004; d)
A. C. Frisch, M. Beller, Angew. Chem. Int. Ed. 2005, 44, 674; Angew.
Chem. 2005, 117, 680; e) A. Rudolph, M. Lautens, Angew. Chem. Int.
Ed. 2009, 48, 2656; Angew. Chem. 2009, 121, 2694; f) R. Jana, T. P.
Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417; g) Boronic Acids:
Preparation and Applications in Organic Synthesis, Medicine and
Materials (Ed.: D. G. Hall), 2nd ed., Wiley-VCH, Weinheim, 2011.
C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y.
Fu, M. Czyzewska, P. G. Steel, T. B. Marder, L. Liu, Angew. Chem. Int.
Ed. 2012, 51, 528; Angew. Chem. 2012, 124, 543.
+
-
polar solvation conditions, but rather an ion pair (E /I ) which is
formally formed by heterolytic fission of the CI bond in F or by
charge transfer from E to the Iatom. Zwitterion G is immediately
formed by collapse of this ion pair.
[
[
2]
3]
a) H. Ito, K. Kubota, Org. Lett. 2012, 14, 890; other examples for Cu-
catalyzed borylation, see: b) J. H. Kim, Y. K. Chung, RSC Adv. 2014, 4,
39755; c) S. K. Bose, S. Brand, H. O. Omoregie, M. Haehnel, J. Maier,
G. Bringmann, T. B. Marder, ACS Catal. 2016, 6, 8332.
[
4]
5]
a) A. S. Dudnik, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 10693; an
additional example for Ni-catalyzed borylation, see: b) J. Yi, J.-H. Liu, J.
Liang, J.-J. Dai, C.-T. Yang, Y. Fu, L. Liu, Adv. Synth. Catal. 2012, 354,
Figure 1. Calculated spin density of radical D/E (PBE0-D3/def2-TZVP,
isosurface value: 0.01 a.u.).
1685.
In summary, a method for metal and additive-free borylation
of alkyl and aryl iodides was introduced. The reaction proceeds
under very mild conditions in good to excellent yields with a broad
range of alkyl and aryl iodides. As compared to the reactions with
aryl iodides, alkyl iodides generally lead to higher yields. Radical
clock experiments and DFT calculations support the suggested
radical chain mechanism.
[
S. K. Bose, K. Fucke, L. Liu, P. G. Steel, T. B. Marder, Angew. Chem.
Int. Ed. 2014, 53, 1799; Angew. Chem. 2014, 126, 1829.
[
6]
7]
T. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139.
[
Metal-free radical borylation of carboxylic acids, see: a) A. Fawcett, J.
Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers, V. K. Aggarwal, Science
2017, 357, 283; transition metal catalyzed radical borylation of carboxylic
acids, see: b) C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters,
M. Kumar, A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan, P. S. Baran,
Science 2017, 356, eaam7355; c) D. Hu, L. Wang, P. Li, Org. Lett. 2017,
19, 2770; deaminative radical borylation, see: d) J. Wu, L. He, A. Noble,
V. K. Aggarwal, J. Am. Chem. Soc. 2018, 140, 34, 10700.
[
8]
9]
S. K. Bose, A. Deißenberger, A. Eichhorn, P. G. Steel, Z. Lin, T. B.
Marder, Angew. Chem. Int. Ed. 2015, 54, 11843; Angew. Chem. 2015,
127, 12009.
[
a) A. M. Mfuh, J. D. Doyle, B. Chhetri, H. D. Arman, O. V. Larionov, J.
Am. Chem. Soc. 2016, 138, 2985; b) A. M. Mfuh, V. T. Nguyen, B. Chhetri,
J. E. Burch, J. D. Doyle, V. N. Nesterov, H. D. Arman, O. V. Larionov, J.
Am. Chem. Soc. 2016, 138, 8408; c) A. M. Mfuh, B. D. Schneider, W.
Cruces, O. V. Larionov, Nat. Protoc. 2017, 12, 604.
[
[
[
10] K. Chen, S. Zhang, P. He, P. Li, Chem. Sci. 2016, 7, 3676.
11] M. Jiang, H. Yang, H. Fu, Org. Lett. 2016, 18, 5248.
12] a) L. Zhang, L. Jiao, J. Am. Chem. Soc. 2017, 139, 607; b) L. Zhang, L.
Jiao, Chem. Sci. 2018, 9, 2711; an additional example for pyridine-
catalyzed borylation, see: c) S. Pinet, V. Liautard, M. Debiais, M.
Pucheault, Synthesis 2017, 49, 4759.
[
13] Radical borylation of other aryl precursors, see: a) F. Mo, Y. Jiang, D.
Qiu, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2010, 49, 1846; Angew.
Chem. 2010, 122, 1890; b) J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal.
2012, 354, 2625; c) D. Qiu, L. Jin, Z. Zheng, H. Meng, F. Mo, X. Wang,
Y. Zhang, J. Wang, J. Org. Chem. 2013, 78, 1923; d) D. Qiu, Y. Zhang,
J. Wang, Org. Chem. Front. 2014, 1, 422; e) D. Qiu, H. Meng, L. Jin, S.
Tang, S. Wang, F. Mo, Y. Zhang, J. Wang, Org. Synth. 2014, 91, 106; f)
S. Ahammed, S. Nandi, D. Kundu, B. C. Ranu, Tetrahedron Lett. 2016,
57, 1551; g) X. Qi, L.-B. Jiang, C. Zhou, J.-B. Peng, X.-F. Wu,
Figure 2. Transition structures for I-atom transfer from CH
PBE0-D3/def2-TZVP).
3
I to radical D/E
ChemistryOpen 2017, 6, 345; h) L. Candish, M. Teders, F. Glorius, J. Am.
(
This article is protected by copyright. All rights reserved.