Inorganic Chemistry
Article
(3) Moore, W. J.; Pauling, L. The Crystal Structures of the Tetragonal
Monoxides of Lead, Tin, Palladium, and Platinum. J. Am. Chem. Soc.
1941, 63 (5), 1392−1394.
the increased covalent anion-to-anion bonding at high pressure
will impact the geochemical behaviors, such as partitioning of
transition metals (Ir, Ru, Rh, and Os) which are often used as
tracers to understand the deep processes. Oxygen is the main
anion for the phases stable in such planets. Therefore, the
possibility of increased covalency would affect the equations of
state of the phases (such as compressibility) and consequently
alter the mass-radius relations, which are fundamental tools in
inferring the composition of the exoplanets in astrophysical
measurements. It can also imply that the geochemical cycle of
the super-earths could be fundamentally different from that of
smaller versions (e.g., Earth) if such pressure driven processes
(dimerization of anions) can alter the chemical behaviors of
materials at high pressures.
(4) Range, K.-J.; Rau, F.; Klement, U.; Heyns, A. M. β-PtO2: High
Pressure Synthesis of Single Crystals and Structure Refinement. Mater.
Res. Bull. 1987, 22 (11), 1541−1547.
(5) Shirako, Y.; Wang, X.; Tsujimoto, Y.; Tanaka, K.; Guo, Y.;
Matsushita, Y.; Nemoto, Y.; Katsuya, Y.; Shi, Y.; Mori, D.; et al.
Synthesis, Crystal Structure, and Electronic Properties of High-
Pressure PdF2-Type Oxides MO2 (M = Ru, Rh, Os, Ir, Pt). Inorg.
Chem. 2014, 53 (21), 11616−11625.
(6) Zhao, Z.; Xu, B.; Tian, Y. Recent Advances in Superhard Materials.
Annu. Rev. Mater. Res. 2016, 46 (1), 383−406.
(7) Salamat, A.; Hector, A. L.; Kroll, P.; McMillan, P. F. Nitrogen-Rich
Transition Metal Nitrides. Coord. Chem. Rev. 2013, 257 (13), 2063−
2072.
(8) Crowhurst, J. C.; Goncharov, A. F.; Sadigh, B.; Evans, C. L.;
Morrall, P. G.; Ferreira, J. L.; Nelson, A. J. Synthesis and Character-
ization of the Nitrides of Platinum and Iridium. Science 2006, 311
(5765), 1275−1278.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(9) Wessel, M.; Dronskowski, R. Nature of N-N Bonding within High-
Pressure Noble-Metal Pernitrides and the Prediction of Lanthanum
Pernitride. J. Am. Chem. Soc. 2010, 132 (7), 2421−2429.
(10) Haines, J.; Leger, J. M.; Schmidt, M. W.; Petitet, J. P.; Pereira, A.
S.; Da Jornada, J. A. H.; Hull, S. Structural Characterisation of the Pa3-
Type, High Pressure Phase of Ruthenium Dioxide. J. Phys. Chem. Solids
1998, 59 (2), 239−243.
X-ray diffraction pattern from Run 417. Raman spectra of
α-PtO2 starting material. Table summary for experimental
runs. Method for Rietveld refinements (PDF)
́
(11) Leger, J. M.; Haines, J.; Blanzat, B. Materials Potentially Harder
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
■
than Diamond: Quenchable High-Pressure Phases of Transition Metal
Dioxides. J. Mater. Sci. Lett. 1994, 13 (23), 1688−1690.
̈
(12) Lundin, U.; Fast, L.; Nordstrom, L.; Johansson, B.; Wills, J. M.;
Eriksson, O. Transition-Metal Dioxides with a Bulk Modulus
Comparable to Diamond. Phys. Rev. B: Condens. Matter Mater. Phys.
1998, 57 (9), 4979−4982.
́
(13) Soulard, C.; Rocquefelte, X.; Petit, P.-E.; Evain, M.; Jobic, S.; Itie,
J.-P.; Munsch, P.; Koo, H.-J.; Whangbo, M.-H. Experimental and
Theoretical Investigation on the Relative Stability of the PdS - and
2
The authors declare no competing financial interest.
Pyrite-Type Structures of PdSe . Inorg. Chem. 2004, 43 (6), 1943−
2
1949.
ACKNOWLEDGMENTS
(14) Hu, Q.; Kim, D. Y.; Yang, W.; Yang, L.; Meng, Y.; Zhang, L.; Mao,
H.-K. FeO2 and FeOOH under Deep Lower-Mantle Conditions and
Earth’s Oxygen-Hydrogen Cycles. Nature 2016, 534 (7606), 241−244.
(15) Hu, Q.; Kim, D. Y.; Liu, J.; Meng, Y.; Yang, L.; Zhang, D.; Mao,
W. L.; Mao, H. Dehydrogenation of Goethite in Earth’s Deep Lower
Mantle. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (7), 1498−1501.
(16) Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T. The Pyrite-
Type High-Pressure Form of FeOOH. Nature 2017, 547 (7662), 205−
208.
(17) Yuan, L.; Ohtani, E.; Ikuta, D.; Kamada, S.; Tsuchiya, J.; Naohisa,
H.; Ohishi, Y.; Suzuki, A. Chemical Reactions Between Fe and H 2 O up
to Megabar Pressures and Implications for Water Storage in the Earth’s
Mantle and Core. Geophys. Res. Lett. 2018, 45 (3), 1330−1338.
(18) Ye, Y.; Prakapenka, V.; Meng, Y.; Shim, S.-H. Intercomparison of
the Gold, Platinum, and MgO Pressure Scales up to 140 GPa and 2500
K. J. Geophys. Res. Solid Earth 2017, 122, 3450−3464.
(19) Prakapenka, V. B.; Kubo, A.; Kuznetsov, A.; Laskin, A.;
Shkurikhin, O.; Dera, P.; Rivers, M. L.; Sutton, S. R. Advanced Flat
Top Laser Heating System for High Pressure Research at GSECARS:
Application to the Melting Behavior of Germanium. High Pressure Res.
2008, 28 (3), 225−235.
(20) Prescher, C.; Prakapenka, V. B. DIOPTAS: A Program for
Reduction of Two-Dimensional X-Ray Diffraction Data and Data
Exploration. High Pressure Res. 2015, 35 (3), 223−230.
(21) Shim, S.-H. PeakPo - A python software for X-ray diffraction
■
We thank three anonymous reviewers for their helpful
comments. The work has been supported by the Keck
Foundation (PI: P. Buseck), NASA (80NSSC18K0353), and
NSF (EAR1338810). The results reported herein benefit from
collaborations and/or information exchange within NASA’s
Nexus for Exoplanet System Science (NExSS) research
coordination network sponsored by NASA’s Science Mission
Directorate. The synchrotron experiments were conducted at
GSECARS, Advanced Photon Source (APS). GSECARS is
supported by NSF-Earth Science (EAR-1128799) and DOE-
GeoScience (DE-FG02-94ER14466). APS is supported by
DOE-BES, under contract DE-AC02-06CH11357. Computa-
tions in this work benefit from the use of the Extreme Science
and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation − United States,
grant no. OCI-1053575. The experimental data for this paper are
REFERENCES
■
(1) Adams, R.; Shriner, R. L. Platinum Oxide as a Catalyst in the
Reduction of Organic Compounds. III. Preparation and Properties of
the Oxide of Platinum Obtained by the Fusion of Chloroplatinic Acid
with Sodium Nitrate. J. Am. Chem. Soc. 1923, 45 (9), 2171−2179.
(2) Muller, O.; Roy, R. Formation and Stability of the Platinum and
Rhodium Oxides at High Oxygen Pressures and the Structures of
Pt3O4, β-PtO2 and RhO2. J. Less-Common Met. 1968, 16 (2), 129−
146.
(22) Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab
̈
Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys.
Rev. B: Condens. Matter Mater. Phys. 1996, 54 (16), 11169−11186.
G
Inorg. Chem. XXXX, XXX, XXX−XXX