C. Y. K. Chan, D. Liu, J. W. Y. Lam, H. H. Y. Sung,
I. D. Williams, Y. Ma and B. Z. Tang, Angew. Chem., Int. Ed.,
2009, 48, 7608; (d) Z. Zhao, J. W. Y. Lam and B. Z. Tang, Curr.
Org. Chem., 2010, 14, 2109.
2 (a) Z. Li, Y. Dong, B. Mi, Y. Tang, M. Haussler, H. Tong,
¨
P. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sun, K. Wong,
P. Gao, I. D. Williams, H. S. Kwok and B. Z. Tang, J. Phys.
Chem. B, 2005, 109, 10061; (b) G. Yu, S. Yin, Y. Liu, J. Chen,
X. Xu, X. Sun, D. Ma, X. Zhan, Q. Peng, Z. Shuai, B. Z.
Tang, D. Zhu, W. Fang and Y. Luo, J. Am. Chem. Soc., 2005,
127, 6335.
3 (a) V. S. Vyas and R. Rathore, Chem. Commun., 2010, 46, 1065;
(b) W. Wang, T. Lin, M. Wang, T.-X. Liu, L. Ren, D. Chen and
S. Huang, J. Phys. Chem. B, 2010, 114, 5983.
Fig. 4 (A) AFM image of thin film of p-BTPATPE deposited on the
1/2
4 (a) Z. Zhao, S. Chen, J. W. Y. Lam, P. Lu, Y. Zhong, K. S. Wong,
H. S. Kwok and B. Z. Tang, Chem. Commun., 2010, 46, 2221;
(b) Z. Zhao, P. Lu, J. W. Y. Lam, Z. Wang, C. Y. K. Chan, H. H.
Y. Sung, I. D. Williams, Y. Ma and B. Z. Tang, Chem. Sci.,
2010, 2, 672; (c) Z. Zhao, S. Chen, J. W. Y. Lam, C. K. W.
Jim, C. Y. K. Chan, Z. Wang, P. Lu, C. Deng, H. S. Kwok,
Y. Ma and B. Z. Tang, J. Phys. Chem. C, 2010, 114, 7963;
(d) Y. Liu, S. Chen, J. W. Y. Lam, P. Lu, R. T. K. Kwok,
F. Mahtab, H. S. Kwok and B. Z. Tang, Chem. Mater., 2011,
DOI: 10.1021/cm2003269.
5 (a) Y. Shirota, J. Mater. Chem., 2000, 10, 1; (b) Y. Shirota,
J. Mater. Chem., 2005, 15, 75; (c) Y. Shirota and H. Kageyama,
Chem. Rev., 2007, 107, 953.
6 (a) Y. Song, C. Di, W. Xu, Y. Liu, D. Zhang and D. Zhu, J. Mater.
Chem., 2007, 17, 4483; (b) Y. Song, C. Di, X. Yang, S. Li, W. Xu,
Y. Liu, L. Yang, Z. Shuai, D. Zhang and D. Zhu, J. Am. Chem.
Soc., 2006, 128, 15940.
7 (a) T. P. I. Saragi, T. F. Lieker and J. Salbeck, Adv. Funct. Mater.,
2006, 16, 966; (b) T. P. I. Saragi, T. F. Lieker and J. Salbeck, Synth.
Met., 2005, 148, 267; (c) M. Sonntag, K. Kreger, D. Hanft,
P. Strohriegl, S. Setayesh and D. de Leeuw, Chem. Mater., 2005,
17, 3031.
8 M. Thelakkat and H. W. Schmidt, Adv. Mater., 1998, 10, 219.
9 (a) Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di,
K. Xiao, X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu and D. Zhu,
Adv. Funct. Mater., 2005, 16, 426; (b) N. Drolet, J. F. Morin,
N. Leclerc, S. Wakim, Y. Tao and M. Leclerc, Adv. Funct. Mater.,
2005, 15, 1671.
10 (a) J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava,
O. Barbosa-Garcia, M. Olmos-Lopez, E. Arias and I. Moggio,
Opt. Mater., 2007, 29, 821; (b) J. J. M. Halls, K. Pichler,
R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett.,
1996, 68, 3120.
11 (a) A. R. Inigo, C. H. Tan, W. Fann, Y.-S. Huang, G.-Y. Perng
and S.-A. Chen, Adv. Mater., 2001, 13, 504; (b) G. G. Malliaras,
Y. Shen, D. H. Dunlap, H. Murata and Z. H. Kafafi, Appl. Phys.
Lett., 2001, 79, 2582.
OTS-treated silicon substrate. (B) Drain current (ꢁIDS) and (ꢁIDS
)
versus gate voltage (VGS) at a drain voltage (VDS) of ꢁ50 V in a FET
device of p-BTPATPE with a channel length (L) of 100 mm and a
channel width (W) of 1 mm.
On/off ratio of the drain current obtained between 0 and ꢁ50 V
gate bias from the transfer I–V curve is larger than 2 ꢀ 104. The
fact that the field effect mobility of p-BTPATPE is higher than the
hole drift mobility determined through the TOF measurement
can be attributed to different films used in the two measurements.
The mobility measured from a p-BTPATPE-doped PS film in the
TOF experiment is affected by many parameters such as the PS
matrix and the dopant concentration. It is also limited by the
efficiency of charge separation at the interface of p-BTPATPE
and fullerene. The measured field effect mobility of p-BTPATPE
is high for amorphous organic semiconductor films,14 and among
the reported values for TPA-based organic semiconductors.6,7,15
In summary, we synthesized an AIE luminogen p-BTPATPE by
attaching TPA peripheries to a TPE core. Whereas p-BTPATPE is
weakly emissive in solution, it is induced to emit efficiently in film.
p-BTPATPE possesses good hole-transporting property, as
revealed by its high HOMO energy level (ꢁ5.15 eV) and hole
mobility (5.2 ꢀ 10ꢁ4 cm2/Vs) measured by the TOF technique. A
p-type FET device utilizing amorphous film of p-BTPATPE
is fabricated, which shows high field effect mobility up to
2.6 ꢀ 10ꢁ3 cm2/Vs. Combining this with its efficient PL and
electroluminescence, p-BTPATPE is anticipated to find an array
of applications in organic electronics and optics.
The work reported in this paper was partially supported by
the Research Grants Council of Hong Kong (603509, 601608,
CUHK2/CRF/08, and HKUST2/CRF/10), the Innovation and
Technology Committee of Hong Kong (AoE/P-03/08), and the
National Natural Science Foundation of China (20634020).
Z.J.Z. acknowledges the financial support from the Initial
Funding of Hangzhou Normal University (HSQK0085) and
Natural Science Foundation of Zhejiang Province (Y4110331).
12 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 2002,
14, 99.
13 The capacitance of 300 nm-thick OTS-treated silicon wafer is
reported to be 11.3 nF/cm2 and is close to the value of the
untreated one. See: Q. Miao, M. Lefenfeld, T.-Q. Nguyen,
T. Siegrist, C. Kloc and C. Nuckolls, Adv. Mater., 2005,
17, 407.
14 (a) T. Kawase, T. Fujiwara, C. Kitamura, A. Konishi, Y. Hirao,
K. Matsumoto, H. Kurata, T. Kubo, S. Shinamura, H. Mori,
E. Miyazaki and K. Takimiya, Angew. Chem., Int. Ed., 2010, 49,
7728; (b) Y. Shirota, J. Mater. Chem., 2005, 15, 75.
15 (a) S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere and
J. Roncali, J. Am. Chem. Soc., 2006, 128, 3459; (b) N. Satoh,
T. Nakashima and K. Yamamoto, J. Am. Chem. Soc., 2005, 127,
13030.
Notes and references
1 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740; (b) Y. Hong, J. W. Y. Lam and B. Z. Tang,
Chem. Commun., 2009, 4332; (c) Z. Zhao, Z. Wang, P. Lu,
c
6926 Chem. Commun., 2011, 47, 6924–6926
This journal is The Royal Society of Chemistry 2011