Journal of the American Chemical Society
Communication
(5) Triplet−triplet annihilations are proposed as thermal relaxation
processes of excited species; Wagner, P. J.; Hammond, G. S. Adv.
Photochem., Vol. 5; Noyes, W. A., Jr.; Hammond, G. S.; Pitts, J. N., Jr.,
Eds.; Interscience Publishers: New York, 1968; p 21.
(6) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.
(7) (a) Komiya, N.; Okada, M.; Fukumoto, K.; Jomori, D.; Naota, T. J.
Am. Chem. Soc. 2011, 133, 6493. (b) Bolton, O.; Lee, K.; Kim, H.-J.; Lin,
K. Y.; Kim, J. Nat. Chem. 2011, 3, 205.
(8) Rare dendric protections have contributed to the same emission
behaviors in the solution and solid: (a) Lo, S.-C.; Harding, R. E.; Shipley,
C. P.; Stevenson, S. G.; Burn, P. L.; Samuel, I. D. W. J. Am. Chem. Soc.
2009, 131, 16681. Most dendritic examples change the wavelength and/
or quantum yield of phosphorescence according to their concentration:
(b) Lo, S.-C.; Male, N. A. H.; Markham, J. P. J.; Magennis, S. W.; Burn, P.
L.; Salata, O. V.; Sammuel, I. D. W. Adv. Mater. 2002, 14, 975. (c) Kim, J.
J.; You, Y.; Park, Y.-S.; Kim, J.-J.; Park, S. Y. J. Mater. Chem. 2009, 19,
8347. (d) Tang, M.-C.; Tsang, D. P.-K.; Chan, M. M.-Y.; Wong, K. M.-
C.; Yam, V. W.-W. Angew. Chem., Int. Ed. 2013, 52, 446.
(9) Gong, S.; Yang, C.; Qin, J. Chem. Soc. Rev. 2012, 41, 4797.
(10) Zhao, X.; Cardolaccia, T.; Farley, R. T.; Abboud, K. A.; Schanze, K.
S. Inorg. Chem. 2005, 44, 2619.
(11) (a) Terao, J.; Tsuda, S.; Tanaka, Y.; Okoshi, K.; Fujihara, T.; Tsuji,
Y.; Kambe, N. J. Am. Chem. Soc. 2009, 131, 16004. (b) Terao, J.;
Wadahama, A.; Matono, A.; Tada, T.; Watanabe, S.; Seki, S.; Fujihara, T.;
Tsuji, Y. Nat. Commun. 2013, 4, 1691. (c) Terao, J.; Homma, K.;
Konoshima, Y.; Imoto, R.; Masai, H.; Matsuda, W.; Seki, S.; Fujihara, T.;
Tsuji, Y. Chem. Commun. 2014, 50, 658. (d) Recent reviews: Terao, J.
Polym. Chem. 2011, 2, 2444.
Likewise, the quantum yields were nearly identical in solution
(5.4%) and the solid state (4.4%). This is the first demonstration
of nearly equal phosphorescence emission behaviors in dilute-
solution and high-density-solid states. These results suggest that
the complete insulation of phosphorescent polymers realizes
“unimolecular phosphorescence,” even in the solid state.
In conclusion, higher-order inclusion effects were observed on
the phosphorescence behavior of Pt−acetylide polymers fully
covered with PM α-CDs. To our knowledge, this is an
unprecedented example which integrates the features of
phosphorescence and rotaxane structure.24 Systematic syntheses
of targeted-coverage polymers distinguished two cyclic insulation
effects that stabilized the intermediate triplet species, which are
sensitive to interactions with neighboring molecules. First, the
targeted insulation for π-conjugated areas efficiently enhanced
the phosphorescence intensity in both the solution and solid
states owing to the restriction of structural fluctuations. Second,
complete 3-D insulation generated almost identical phosphor-
escence emission behaviors in solid systems as in dilute solutions
because of protection from all interactions. Moreover, such
insulation also led to oxygen tolerance: phosphorescence was
observed under air in the solid state. This is the first example of
the unimolecular phosphorescence of a polymer material in the
high-density solid state. These results, derived from the linked
rotaxane structures, indicate that even triplet species can be
enhanced and stabilized by the appropriate molecular design and
can guide the development of solid-state molecular devices.
(12) Terao, J.; Masai, H.; Fujihara, T.; Tsuji, Y. Chem. Lett. 2012, 41,
652.
(13) The 31P NMR spectra of all polymers indicating that the polymers
have a trans-Pt(PEt3)2 coordination geometry: Ohshiro, N.; Takei, F.;
Onitsuka, K.; Takahashi, S. J. Organomet. Chem. 1998, 569, 195.
(14) The chemical shifts of the PEt3 protons in the 1H NMR spectra of
polymers 5, 8, and 10 in CDCl3 (1.99−2.01 ppm) were clearly shifted
upfield compared with those for 4 and 6 (2.17 ppm), since the former
protons existed near the Me groups of the outer-ring lip of PM α-CD.
(15) (a) Wong, W.-Y.; Liu, L.; Poon, S.-Y.; Choi, K.-H.; Cheah, K.-W.;
Shi, J.-X. Macromolecules 2004, 37, 4496. (b) Haskins-Glusac, K.; Pinto,
M. R.; Tan, C.; Schanze, K. S. J. Am. Chem. Soc. 2004, 126, 14964.
(16) Wittmann, H. F.; Friend, R. H.; Khan, M. S.; Lewis, J. J. Chem. Phys.
1994, 101, 2693.
ASSOCIATED CONTENT
* Supporting Information
Detailed synthetic procedures, chromatogram, and spectral data.
This material is available free of charge via the Internet at http://
■
S
AUTHOR INFORMATION
Corresponding Authors
Notes
■
(17) Kiguchi, M.; Nakashima, S.; Tada, T.; Watanabe, S.; Tsuda, S.;
Tsuji, Y.; Terao, J. Small 2012, 8, 726.
The authors declare no competing financial interest.
(18) The lifetimes of triplet species had a large difference between 5 (30
μs) and 4 (10 μs) in a nitrogen atmosphere, suggesting that the
insulation of 5 also prohibited triplet quenching processes other than
that by oxygen, possibly such as molecular motion (Figure S6b).
(19) The singlet-based fluorescence of conjugated molecules did not
decay dramatically even in the solid state with a certain level of
insulation: Terao, J.; Ikai, K.; Kambe, N.; Seki, S.; Saeki, A.; Ohkoshi, K.;
Fujihara, T.; Tsuji, Y. Chem. Commun. 2011, 47, 6816.
ACKNOWLEDGMENTS
■
This research was supported by the Funding Program for JSPS
Research Fellow and Grant-in-Aid for Scientific Research on
Innovative Areas (“Molecular Architectonics” and “Soft Molec-
ular Systems”) from MEXT, Japan.
(20) Many solid-state fluorescent polymers bearing protection have
been reported: (a) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120,
11864. (b) Sato, T.; Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. 1999, 121,
10658. (c) Pan, C.; Sugiyasu, K.; Wakayama, Y.; Sato, A.; Takeuchi, M.
Angew. Chem., Int. Ed. 2013, 52, 10775.
(21) The spectra were corrected to the same number of photons
absorbed at the excitation wavelength.
(22) (a) Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus,
REFERENCES
■
(1) (a) Costa, R. D.; Ortí, E.; Bolink, H. J.; Monti, F.; Accorsi, G.;
Armaroli, N. Angew. Chem., Int. Ed. 2012, 51, 8178. (b) Evans, R. C.;
Douglas, P.; Winscom, C. J. Coord. Chem. Rev. 2006, 250, 2093. (c) Xiao,
L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater.
2011, 23, 926.
(2) (a) Ma, D.-L.; Ma, V. P.-Y.; Chan, D. S.-H.; Leung, K.-H.; He, H.-Z.;
Leung, C.-H. Coord. Chem. Rev. 2012, 256, 3087. (b) Liu, Z.; He, W.;
Guo, Z. Chem. Soc. Rev. 2013, 42, 1568.
(3) (a) Mou, X.; Wu, Y.; Liu, S.; Shi, M.; Liu, X.; Wang, C.; Sun, S.;
Zhao, Q.; Zhou, X.; Huang, W. J. Mater. Chem. 2011, 21, 13951.
(b) Baggaley, E.; Weinstein, J. A.; Williams, J. A. G. Coord. Chem. Rev.
2012, 256, 1762.
M.; Khan, M. S.; Raithby, P. R.; Kohler, A.; Friend, R. H. J. Am. Chem. Soc.
̈
2001, 123, 9412. (b) Silverman, E. E.; Cardolaccia, T.; Zhao, X.; Kim, K.-
K.; Haskins-Glusac, K.; Schanze, K. S. Coord. Chem. Rev. 2005, 249, 1491.
(23) Kohler, A.; Wilson, J. S.; Friend, R. H.; Al-Suti, M. K.; Khan, M. S.;
̈
Gerhard, A.; Bassler, H. J. Chem. Phys. 2002, 116, 9457.
̈
(24) (a) Liang, A.-H.; Zhang, K.; Zhang, J.; Huang, F.; Zhu, X.-H.; Cao,
Y. Chem. Mater. 2013, 25, 1013. (b) Cao, J.; Ma, X.; Min, M.; Cao, T.;
Wu, S.; Tian, H. Chem. Commun. 2014, 50, 3224.
(4) (a) Zhu, Y.-C.; Zhou, L.; Li, H.-Y.; Xu, Q.-L.; Teng, M.-Y.; Zheng,
Y.-X.; Zuo, J.-L.; Zhang, H.-J.; You, X.-Z. Adv. Mater. 2011, 23, 4041.
(b) Julia,
Herrero, P. Chem. Sci. 2014, 5, 1875.
́ ́ ́ ́
F.; Bautista, D.; Fernandez-Hernandez, J. M.; Gonzalez-
14717
dx.doi.org/10.1021/ja508636z | J. Am. Chem. Soc. 2014, 136, 14714−14717