compounds smoothly stained cells to different extent. The
compounds were minimally toxic to the cells over several days
of incubation (Fig. S1, ESIw), demonstrating the suitability of the
library compounds for biological application, free from the toxic
copper catalyst. Dyes staining mESC stronger than MEF were
selected as primary hits (Fig. 1b) and further tested by flow
cytometry to confirm the selective staining of mESC. CXAC-59
was selected as the best dye out of total 160 compounds in terms
of selective staining of mESC and separation of the two cell
populations from flow cytometry (Fig. 1d). As the first blue
fluorescent compound which selectively stains mESC, we dubbed
the compound CDb8 (Compound of Designation blue 8) (Fig. 1a).
We also investigated the selectivity of CDb8 in differentiated
mESC and observed that the differentiated cells were not stained
by CDb8 (Fig. 1b; Fig. S2, ESIw).
In conclusion, we have successfully synthesized the first solid
phase combinatorial xanthone library (CX) using click chemistry.
The secondary derivatization of CX afforded a further library,
CXAC with high yield and purity, demonstrating the robust
acylation platform for new library generation. These xanthone
library compounds have demonstrated their biocompatibility in
terms of easy cell penetration and low toxicity. One mESC
selective compound CDb8 was identified as a blue color imaging
and flow cytometry probe for embryonic stem cells. Detailed
biological applications of CDb8 will be reported in due course.
This work was supported by an intramural funding from
A*STAR (Agency for Science, Technology and Research,
Singapore) Biomedical Research Council and A*STAR SSCC
Grant (SSCC10/024).
Notes and references
1 (a) R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103,
4419–4476; (b) C. Suksai and T. Tuntulani, Chem. Soc. Rev., 2003,
32, 192–202.
2 (a) M. S. Schiedel, C. A. Briehn and P. Bauerle, Angew. Chem., Int.
Ed., 2001, 40, 4677–4680; (b) K. Sivakumar, F. Xie, B. M. Cash,
S. Long, H. N. Barnhill and Q. Wang, Org. Lett., 2004, 6,
4603–4606; (c) J. Min, J. W. Lee, Y. H. Ahn and Y. T. Chang,
J. Comb. Chem., 2007, 9, 1079–1083; (d) Q. Li, J. S. Lee, C. Ha,
C. B. Park, G. Yang, W. B. Gan and Y. T. Chang, Angew. Chem.,
Int. Ed., 2004, 43, 6331–6335; (e) S. Wang and Y. T. Chang, J. Am.
Chem. Soc., 2006, 128, 10380–10381.
3 (a) Y. H. Ahn, J. S. Lee and Y. T. Chang, J. Am. Chem. Soc., 2007,
129, 4510–4511; (b) J. S. Lee, N. Y. Kang, Y. K. Kim, A. Samanta,
S. Feng, H. K. Kim, M. Vendrell, J. H. Park and Y. T. Chang,
J. Am. Chem. Soc., 2009, 131, 10077–10082.
4 C. N. Im, N. Y. Kang, H. H. Ha, X. Bi, J. J. Lee, S. J. Park,
S. Y. Lee, M. Vendrell, Y. K. Kim, J. S. Lee, J. Li, Y. H. Ahn,
B. Feng, H. H. Ng, S. W. Yun and Y. T. Chang, Angew. Chem., Int.
Ed., 2010, 49, 7497–7500.
5 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932;
(b) L. Wu and K. Burgess, J. Org. Chem., 2008, 73, 8711–8718;
(c) T. Ueno, Y. Urano, K. Setsukinai, H. Takakusa, H. Kojima,
K. Kikuchi, K. Ohkubo, S. Fukuzumi and T. Nagano, J. Am.
Chem. Soc., 2004, 126, 14079–14085; (d) M. Ali, P. Dutta and
S. Pandey, J. Phys. Chem. B, 2010, 114, 15042–15051; (e) Z. Zhou
and C. J. Fahrni, J. Am. Chem. Soc., 2004, 126, 8862–8863;
(f) A. Samanta, M. Vendrell, R. Das and Y. T. Chang, Chem.
Commun., 2010, 46, 7406–7408.
6 (a) M. Meldal and C. W. Tornoe, Chem. Rev., 2008, 108, 2952–3015;
(b) M. G. Finn, H. C. Kolb, V. V. Fokin and K. B. Sharpless, Prog.
Chem., 2008, 20, 1–4.
7 J. Li, M. Hu and S. Q. Yao, Org. Lett., 2009, 11, 3008–3011.
8 Y. T. Chang, J. Choi, S. Ding, E. E. Prieschl, T. Baumruker,
J. M. Lee, S. K. Chung and P. G. Schultz, J. Am. Chem. Soc.,
2002, 124, 1856–1857.
c
7490 Chem. Commun., 2011, 47, 7488–7490
This journal is The Royal Society of Chemistry 2011