ChemComm
Communication
undergoes selective 6-exo-trig cyclisation on to the alkene to
give 2b as a single diastereoisomer after a further reduction and
a protonation (Fig. 3).5a,b
In summary, allenyllactones bearing a tethered alkene
undergo 5-exo/6-exo radical cyclisation cascades that deliver
carbo[5.4.0]bicyclic motifs in a diastereoselective, one-pot process
using the commercially-available reagent SmI2 in the presence of
H2O. The cascades establish two new carbocyclic rings and four
stereocentres in moderate overall yield for the 6-electron-process.
Further studies on these and other complexity-generating cascade
processes are underway in our laboratories.
Scheme 4
Notes and references
‡ Treatment of cis-1b with SmI2–H2O gave a complex mixture of
products from which a cascade product could be isolated as a single
unknown diastereoisomer in 10% yield.
§ The low mass balance reported is due to difficulties isolating the
cascade products from monocyclisation by-products (e.g. ketones,
hemi-ketals and alcohols [diastereoisomeric at the new hydroxyl bearing
centre]).
Fig. 2 Additional substrates investigated.
gem-dimethyl group. Surprisingly, treatment of trans-1g with
SmI2–H2O returned starting material with no trace of 2g. This is
consistent with the reversible formation of sterically-hindered
ketyl-radical anion 5 (Scheme 4).10
Attempted cascade cyclisation of allenyllactone trans-1h, bearing
a tethered alkyne, and alkenyllactone trans-1i gave products of
monocyclisation (Fig. 2). These observations again show the
challenge presented by these cascades: 6-exo-dig cyclisations
(trans-1h) and 6-exo-trig cyclisations of ketones derived from
alkenyllactone cyclisations (trans-1i) are inefficient.5a,b
Fig. 3 sets out a proposed mechanism and the stereochemical
course for the successful 5-exo/6-exo cascade cyclisations of allenyll-
actones trans-1b–f. For example, reduction of trans-1b with SmI2–
H2O gives axial radical anion 6 that undergoes 5-exo-cyclisation on
to the allene to give unsaturated ketal 7 after a further reduction
and a protonation. Selective conjugate reduction of the enone, in
equilibrium with 7, then gives ketone 4b as a single diastereo-
isomer. Finally, reduction of 4b gives radical anion 8 that
1 For selected reviews on cascade reactions, see: (a) E. A. Anderson,
Org. Biomol. Chem., 2011, 9, 3997; (b) L. F. Tietze, G. Brasche and
K. M. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH,
Weinheim, 2006; (c) K. C. Nicolaou, D. J. Edmonds and P. G. Bulger,
Angew. Chem., Int. Ed., 2006, 45, 7134; (d) L. F. Tietze, Chem. Rev.,
1996, 96, 115; for reviews on cascade processes mediated by electron
transfer reagents, see: (e) G. A. Molander and C. R. Harris, Chem.
Rev., 1996, 96, 307; ( f ) G. A. Molander and C. R. Harris, Tetrahedron,
1998, 54, 3321; (g) T. Skrydstrup, Angew. Chem., Int. Ed. Engl., 1997,
´
˜
36, 345; (h) J. Justicia, L. Alvarez de Cienfuegos, A. G. Campana,
¨
D. Miguel, V. Jakoby, A. Gansauer and J. M. Cuerva, Chem. Soc. Rev.,
2011, 40, 3525. See also ref. 3 and 4.
2 Reviews on metal-mediated radical reactions: (a) B. M. Trost and
I. Fleming, Comprehensive Organic Synthesis, Pergamon Press, 1991;
¨
(b) A. Gansauer and H. Bluhm, Chem. Rev., 2000, 100, 2771;
(c) M. Szostak and D. J. Procter, Angew. Chem., Int. Ed., 2012,
51, 9238; (d) J. Streuff, Synthesis, 2013, 281.
3 D. J. Procter, R. A. Flowers, II and T. Skrydstrup, Organic Synthesis using
Samarium Diiodide: A Practical Guide, RSC Publishing, Cambridge,
2009.
4 Recent reviews on SmI2: (a) H. B. Kagan, Tetrahedron, 2003,
59, 10351; (b) D. J. Edmonds, D. Johnston and D. J. Procter, Chem.
Rev., 2004, 104, 3371; (c) K. C. Nicolaou, S. P. Ellery and J. S. Chen,
Angew. Chem., Int. Ed., 2009, 48, 7140; (d) C. Beemelmanns and
H. U. Reissig, Chem. Soc. Rev., 2011, 40, 2199; (e) M. Szostak,
M. Spain and D. J. Procter, Chem. Soc. Rev., 2013, 42, 9155;
( f ) M. Szostak, N. J. Fazakerley, D. Parmar and D. J. Procter, Chem.
Rev., 2014, 114, 5959. See also ref. 1e–g.
5 (a) D. Parmar, K. Price, M. Spain, H. Matsubara, P. A. Bradley and
D. J. Procter, J. Am. Chem. Soc., 2011, 133, 2418; (b) D. Parmar,
H. Matsubara, K. Price, M. Spain and D. J. Procter, J. Am. Chem. Soc.,
2012, 134, 12751; (c) B. Sautier, S. E. Lyons, M. R. Webb and
D. J. Procter, Org. Lett., 2012, 14, 146; (d) M. D. Helm, M. Da Silva,
D. Sucunza, T. J. Findley and D. J. Procter, Angew. Chem., Int. Ed.,
2009, 48, 9315; (e) N. J. Fazakerley, M. D. Helm and D. J. Procter,
Chem. – Eur. J., 2013, 19, 6718; ( f ) M. T. Levick, S. C. Coote, I. Grace,
C. Lambert, M. L. Turner and D. J. Procter, Org. Lett., 2012, 14, 5744;
(g) M. T. Levick, I. Grace, S.-Y. Dai, N. Kasch, C. Muryn, C. Lambert,
M. L. Turner and D. J. Procter, Org. Lett., 2014, 16, 2292;
(h) S. C. Coote, S. Quenum and D. J. Procter, Org. Biomol. Chem.,
2011, 9, 5104.
6 (a) M. Szostak, M. Spain, D. Parmar and D. J. Procter, Chem.
Commun., 2012, 48, 330. For a review on the influence of additives
´
on properties of SmI2, see: (b) A. Dahlen and G. Hilmersson, Eur.
J. Inorg. Chem., 2004, 3393.
7 For additional studies using SmI2–H2O, see: (a) L. A. Duffy,
H. Matsubara and D. J. Procter, J. Am. Chem. Soc., 2008, 130, 1136;
(b) D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara, P. A. Bradley,
Fig. 3 Proposed mechanism and stereochemical course of the cascades.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 12863--12866 | 12865