636 JOURNAL OF CHEMICAL RESEARCH 2016
−
1
IR (KBr) n /cm : 3035, 2970, 2921, 1632, 1589, 1552, 1492; MS: m/z
Paper 1604115 doi: 10.3184/174751916X14743011878429
Published online: 27 September 2016
max
+
+
3
25 (M ), 234 (M – C H ); Anal. calcd for C H N S: C, 55.37; H,
7 7 15 15 7
4
.65; N, 30.13; S, 9.85; found: C, 55.46; H, 4.7; N, 29.98, S, 9.79%.
-Propylthio-3-benzyl-9-methyl-3H-[1,2,3]triazolo[4,5-d]
1,2,4]triazolo[4,3-a]pyrimidine (6c): White solid; yield 60%; m.p.
80–185 °C; H NMR (CDCl ): δ 1.09 (t, J = 7.2 Hz, 3H, CH ), 1.87
sextet, J = 7.2 Hz, 2H, CH ), 3.28 (s, 3H, CH ), 3.35 (q, J = 7.2 Hz, 2H,
CH S), 5.83 (s, 2H, CH N), 7.30–7.36 (m, 3H, Ar-H), 7.51–7.54 (m, 2H,
Ar-H); C NMR (CDCl ): δ 13.3, 13.9, 23.2, 33.3, 50.5, 128.7, 128.9,
29.2, 134.4, 142.0, 146.9, 155.8, 172.8; IR (KBr) nmax/cm : 3064,
027, 2962, 2929, 2876, 1629, 1588; 1550, 1496; MS: m/z 339 (M ),
7
[
1
References
1
1
C.F. Beyer, N. Zhang, R. Hernandez, D. Vitale, J. Lucas, T. Nguyen, C.
Discafani, S. Ayral-Kaloustian and J.J. Gibbons, Cancer Res., 2008, 68, 2292.
G. Fischer, Adv. Heterocycl. Chem., 2007, 95, 143.
M.A. Phillips, R. Gujjar, N.A. Malmquist, J. White, F. El Mazouni, J. Baldwin
and P.K. Rathod, J. Med. Chem., 2008, 51, 3649.
3
3
(
2
3
2
3
2
2
13
3
−1
1
3
3
4
5
Rathod and M.A. Phillips, J. Med. Chem., 2009, 52, 1864.
W. Yu, C. Goddard, E. Clearfield, C. Mills, T. Xiao, H. Guo, J.D. Morrey, N.E.
Motter, K. Zhao, T.M. Block, A. Cuconati and X. Xu, J. Med. Chem., 2011,
+
+
+
+
10 (M -C H ), 264 (M – C H S), 206 (M – C H N ); Anal. calcd
2 5 3 7 7 7 3
for C H N S: C, 56.62; H, 5.05; N, 28.89; S, 9.45: found: C, 56.57; H,
.01; N, 28.84; S, 9.39%.
-Butylthio-3-benzyl-9-methyl-3H-[1,2,3]triazolo[4,5-d]
1,2,4]triazolo[4,3-a]pyrimidine (6d): White solid; yield 80%;
m.p. 160–164 °C; H NMR (CDCl ): δ 0.97 (t, J = 7.5 Hz, 3H, CH ),
.48–1.56 (m, 2H, CH ), 1.77 (quint., J = 7.2 Hz, 2H, CH ), 3.29 (s, 3H,
CH ), 3.35 (t, J = 7.5 Hz, 2H, CH S), 5.84 (s, 2H, CH N), 7.30–7.36
m, 3H, Ar-H), 7.50–7.54 (m, 2H, Ar-H); C NMR (CDCl ): δ 13.6,
16
17
7
5
5
4, 5660.
J.M. Salas, M.A. Romero, M.P. Sánchez and M. Quirós, Coord. Chem. Rev.,
999, 193, 1119.
7
6
7
[
1
1
P. Molina, A. Arques, M .V . Vinader, J. Becher and K. Brondum, J. Org. Chem.,
1988, 53, 4654.
3
3
1
2
2
8
Y. Sato, Y. Shimoji, H. Fujita, H. Nishino, H. Mizuno, S. Kobayashi and S.
3
2
2
13
(
3
9
1
1
3.9, 21.9, 31.1, 31.7, 50.5, 128.7, 128.9, 129.2, 134.4, 142.8, 146.9,
55.3, 155.8, 172.0; IR (KBr) nmax/cm : 3060, 3031, 2957, 2929, 2870,
631, 1587, 1552, 1496; MS: m/z 353 (M ), 262 (M – C H ), 234 (M –
−1
10
+
+
+
1
Robins, J. Med. Chem., 1982, 25, 420.
7
7
C H N ); Anal. calcd for C H N S: C, 57.77; H, 5.42; N, 27.74; S, 9.07;
11 N. Zhang, S. Ayral-Kaloustian, T. Nguyen, J. Afragola, R. Hernandez, J. Lucas,
7
7
2
17 19
7
found: C, 57.71; H, 5.39; N, 27.70; S, 9.01%.
-Benzylthio-3-benzyl-9-methyl-3H-[1,2,3]triazolo[4,5-d]
1,2,4]triazolo[4,3-a]pyrimidine (6e): White solid; yield 69%; m.p.
12
Molecules, 2007, 12, 1136.
7
[
1
5
13
H.M. Ashour, O.G. Shaaban, O.H. Rizk and I.M. El-Ashmawy, Eur. J. Med.
Chem., 2013, 62, 341.
1
74–180 °C; H NMR (CDCl ): δ 3.29 (s, 3H, CH ), 4.59 (s, 2H, CH S),
3
3
1
2
3
.84 (s, 2H, CH N), 7.31–7.55 (m, 10H, Ar-H); C NMR (CDCl ): δ
14 R. Kumar, R.R. Nair, S.S. Dhiman, J. Sharma and O. Prakash, Eur. J. Med.
Chem., 2009, 44, 2260.
15 Q. Chen, X.-L. Zhu, L.-L. Jiang, Z.-M. Liu and G.-F. Yang, Eur. J. Med. Chem.,
2
3
3
7.6, 38.5, 54.1, 128.1, 128.4, 128.7, 128.8, 128.9, 129.1, 129.2, 134.7,
−1
135.2, 135.8, 155.1, 164.8, 185.8; IR (KBr) nmax/cm : 3067, 3031, 2932,
2008, 43, 595.
+ +
2
074, 1631, 1586, 1551, 1490; MS: m/z 387 (M ), 296 (M – C H ), 264
7
7
16 A. Marwaha, J. White, F. El Mazouni, S.A. Creason, S. Kokkonda, F.S.
Buckner, S.A. Charman, M.A. Phillips and P.K. Rathod, J. Med. Chem., 2012,
55, 7425.
+
(
M – C H S); Anal. calcd for C H N S: C, 62.00; H, 4.42; N, 25.30;
7 7 20 17 7
S, 8.28; found: C, 61.94; H, 4.36; N, 25.24; S, 8.21%.
1
7
Metab. Lett., 2009, 3, 35.
Computational details
All optimisation, frequency and NMR calculations were performed
with the Gaussian 09 Rev. A.01 package. All computational models
were geometrically optimised without any symmetric restriction by
33
18 G. Ruisi, L. Canfora, G. Bruno, A. Rotondo, T.F. Mastropietro, E.A. Debbia,
M.A. Girasolo and B. Megna, J. Organomet. Chem., 2010, 695, 546.
M.M.A. El-Gendy, M. Shaaban, K.A. Shaaban, A.M. El-Bondkly and H.
Laatsch, J. Antibiot. (Tokyo), 2008, 61, 149.
S. Fatma, P.K. Singh, P. Ankit, Shireen, M. Singh and J. Singh, Tetrahedron
Lett., 2013, 54, 6732.
19
3
4
using B3LYP DFT code and choosing the 6-311+g(2d,p) basis set for
all atoms. Cartesian coordinates of geometrically optimised models
are available in the supplementary information. Frequency calculations
were done at the same level of theory to make sure that optimised
models were in their local minimum energy as long as no imaginary
frequency was observed. In order to perform accurate and precise
20
21 A .V . Zavodskaya, V .V . Bakharev, V.E. Parfenov, A.A. Gidaspov, P.A.
Slepukhin, M.L. Isenov and O.S. Eltsov, Tetrahedron Lett., 2015, 56, 1103.
22
A. Gigante, M.-D. Canela, L. Delang, E.-M. Priego, M.-J. Camarasa, G. Querat,
J. Neyts, P. Leyssen and M.-J. Pérez-Pérez, J. Med. Chem., 2014, 57, 4000.
N. Noorolahian and A. Shiri, J. Chem. Res., 2015, 39, 609.
1
35
H NMR GIAO calculations, the WP04 method and aug-cc-pVDZ
as the basis set were used as reported by Jain et al. so that no further
23
24 S.-H. Mousavi, H. Atapour-Mashhad, M. Bakavoli, A. Shiri, M. Akbarzadeh
and Z. Tayarani-Najaran, Russ. J. Bioorganic Chem., 2015, 41, 201.
25 A. Karimian, H. Eshghi, M. Bakavoli, A. Shiri, M. Saadatmandzadeh, T.
Asghari and H. Moradi, J. Iran. Chem. Soc., 2015, 12, 1501.
3
6
scaling operation was necessary at this level of calculation. Also,
1
H NMR GIAO chemical shift calculations were performed via SCRF
3
7
with the PCM model to consider the solvent effect (chloroform).
Geometrical optimisation and the computation of isotropic magnetic
shielding tensors for TMS as reference were performed at the same
level of calculation.
26
A. Hazrathoseyni, S.M. Seyedi, A. Shiri and H. Eshghi, J. Chem. Res., 2015,
9, 148.
3
27
Acknowledgements
29 M. Akbarzadeh, M. Bakavoli, H. Eshghi and A. Shiri, J. Heterocycl. Chem,
2015, 53, 832.
The authors gratefully acknowledge the Research Council
of Ferdowsi University of Mashhad for partial support of
this project (3/37984) and the High Performance Computing
Center of Ferdowsi University of Mashhad for carrying out the
computations.
3
0
M. Bakavoli, S.M. Seyedi, A. Shiri, S. Saberi, M. Gholami and H. Sadeghian,
J. Chem. Res., 2013, 37, 48.
3
2
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.
G.E.S.M.J. Frisch, G.W. Trucks, H.B. Schlegel, B.M.M.A. Robb, J.R.
33
Electronic supplementary information
1
13
34 A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
K.W. Wiitala, T.R. Hoye and C.J. Cramer, J. Chem. Theory Comput., 2006,
, 1085.
37 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999
H and C NMR data and NOESY spectra for 6b are given in
35
the electronic supplementary information which is available
through:
stl.publisher.ingentaconnect.com/content/stl/jcr/supp-data
2
36