Beilstein J. Org. Chem. 2013, 9, 2570–2578.
References
elemental analysis. We have also performed the enamine
cyclization using HCl instead of HBr and have produced the
registered chloride in 81% yield [34].
1. De Clercq, E. J. Clin. Virol. 2004, 30, 115–133.
2. De Clercq, E. Antiviral Res. 1998, 38, 153–179.
Conclusion
3. World Health Organization. Antiretroviral therapy for HIV infection in
adults and adolescents: Recommendations for a public health
approach. 2010 revision.
Here, we have demonstrated the semi-continuous synthesis of
2-bromo-4-methylnicotinonitrile starting from acetone and
malononitrile by utilizing solid Al2O3 and 3 Å MS columns and
decreasing the reaction time of the enamine formation to a
matter of minutes using DCM conditions outside of normal
process windows. The cyclization under Pinner conditions using
the crude output from the Knoevenagel/enamine steps provides
an overall yield of 69% (>88% yield per step). While the Al2O3
column is stable for a limited time (between 24 and 42 min
depending on the reaction concentration used), the current solu-
tion would be to simply replace the columns throughout the
production process or implement larger columns. At the current
state, the amount of Al2O3 and molecular sieves needed for
every one gram of 2-bromo-4-methylnicotinonitrile is 0.37 g
and 0.28 g respectively. Despite the limited stability, the
amount of Al2O3 used in flow to produce 5.4 g of 2-bromo-4-
methylnicotinonitrile is less than the amount of Al2O3 required
for the batch process (about 0.98 g is needed per 1 g of product
[34]). We also predict that by replacing the alumina columns
with a soluble base and a water/base separation a stable, higher
concentration process can be easily achieved from our prelimi-
nary results [22,46]. Finally, we have demonstrated that from a
simple acyclic precursor, 2-bromo-4-methylnicotinonitrile can
be achieved in a three-unit operation process yielding high
purity crystalline materials. The chloride product is already
registered and suggests that this strategy could be implemented
in existing nevirapine processes.
31, 2012).
4. Doherty, T.; Sanders, D.; Goga, A.; Jackson, D. Implications of the new
WHO guidelines on HIV and infant feeding for child survival in South
Africa.
(accessed Oct 31, 2012).
5. van Leth, F.; Phanuphak, P.; Ruxrungtham, K.; Baraldi, E.; Miller, S.;
Gazzard, B.; Cahn, P.; Lalloo, U. G.; van der Westhuizen, I. P.;
Malan, D. R.; Johnson, M. A.; Santos, B. R.; Mulcahy, F.; Wood, R.;
Levi, G. C.; Reboredo, G.; Squires, K.; Cassetti, I.; Petit, D.; Raffi, F.;
Katlama, C.; Murphy, R. L.; Horban, A.; Dam, J. P.; Hassink, E.;
van Leeuwen, R.; Robinson, P.; Wit, F. W.; Lange, J. M. A. Lancet
6. Proceedings of "Joint WHO/UNAIDS annual consultation with
pharmaceutical companies: Global forecasts of antiretroviral demand
2012-2015". November 5-6, 2012, Geneva, Switzerland.
June 6, 2013).
7. Renaud-Théry, F.; Avila-Figueroa, C.; Stover, J.; Thierry, S.;
Vitoria, M.; Habiyambere, V.; Souteyrand, Y. AIDS Res. Treat. 2011,
8. Arribas, J. R.; Eron, J. Curr. Opin. HIV AIDS 2013, 8, 341–349.
9. Pasquet, A.; Messou, E.; Gabillard, D.; Minga, A.; Depoulosky, A.;
Deuffic-Burban, S.; Losina, E.; Freedberg, K. A.; Danel, C.;
Anglaret, X.; Yazdanpanah, Y. PLoS One 2010, 5, e13414.
10.Paredes, R.; Marconi, V. C.; Lockman, S.; Abrams, E. J.; Kuhn, L.
11.WHO Progress Report 2011: Global HIV/AIDS Response.
(accessed June 19, 2013).
Supporting Information
12.Hirsch, M. S.; Günthard, H. F.; Schapiro, J. M.; Vézinet, F. B.;
Clotet, B.; Hammer, S. M.; Johnson, V. A.; Kuritzkes, D. R.;
Mellors, J. W.; Pillay, D.; Yeni, P. G.; Jacobsen, D. M.; Richman, D. D.
13.Boswell, R. F.; Gupton, B. F.; Lo, Y. S. Method for Making Nevirapine.
U.S. Patent 6,680,383, Jan 20, 2004.
The Supporting Information describes synthesis and
characterization data of all substances given in this article,
reactor setup, operational details and screening conditions.
Supporting Information File 1
Experimantal section.
14.Gupton, B. F. Process for making 3-amino-2-chloro-4-methylpyridine.
U.S. Patent 6,399,781, June 4, 2002.
15.Wegner, J.; Ceylan, S.; Kirschning, A. Chem. Commun. 2011, 47,
16.Wiles, C.; Watts, P. Chem. Commun. 2011, 47, 6512–6535.
17.Yoshida, J.-I. Chem. Rec. 2010, 10, 332–341.
Acknowledgements
18.Bogdan, A. R.; Poe, S. L.; Kubis, D. C.; Broadwater, S. J.;
McQuade, D. T. Angew. Chem., Int. Ed. 2009, 48, 8547–8550.
The authors thank the Clinton Health Access Initiative and
Corning Glass, Inc. for support. DTM and ARL, in addition,
thank the NSF (CHE – 1152020), FSU and Vapourtec, Ltd. for
support.
19.Lévesque, F.; Seeberger, P. H. Angew. Chem., Int. Ed. 2012, 51,
2577