S. Sato et al. / Tetrahedron Letters 46 (2005) 8091–8093
8093
scale even at low temperature.10 Thus we could
References and notes
succeeded in the direct detection of 2,20-biphenylylene-
dimethylselenurane 2b by low temperature NMR experi-
ments. As far as we know, this is the first detection of
selenurane [10–Se–4(C4)] containing alkyl ligands.
1. (a) Hayes, R. A.; Martin, J. C. Sulfurane Chemistry. In
Organic Sulfur Chemistry: Theoretical and Experimental
Advances; Bernardi, F., Csizmadia, I. G., Mangini, A.,
Eds.; Elsevier: Amsterdam, 1985; pp 408–483, and refer-
ences cited therein; (b) Bergman, J.; Engman, L.; Siden, J.
Tetra- and Higher-valent (Hypervalent) Derivatives of
Selenium and Tellurium. In The Chemistry of Organic
Selenium and Tellurium Compounds; Patai, S., Rappoport,
Z., Eds.; John Wiley and Sons: New York, 1986; Vol. 1,
pp 517–558 (see also references cited therein); (c) Chem-
istry of Hypervalent Compounds; Akiba, K.-y., Ed.; Wiley-
VCH: New York, 1999; (d) The Organic Chemistry of
Tellurium; Irgolic, K. J., Ed.; Gordon and Breach: New
York, 1974; pp 234–241 (see also references cited therein);
(e) Hoffmann, R.; Howell, J. M.; Rossi, A. R. J. Am.
Chem. Soc. 1976, 98, 2484–2492.
Trost et al. and Hori et al. have reported the generation
and reactivities of 2,20-biphenylylene diaryl sulfuranes
[10–S–4(C4)].11 They prospected that these sulfuranes
should have a configuration similar to that of products
2a,b. Immediate ligand coupling reactions of 2,20-biphen-
ylylene diaryl sulfuranes usually proceed at room tem-
perature to afford the corresponding o-terphenyl aryl
sulfide derivatives quantitatively. On the other hand,
both products 2a,b decomposed to give only dibenzotel-
lurophene 3 or dibenzoselenophene 5 quantitatively,
which are probably produced by the ligand coupling
reaction without a ring-opening of dibenzochalcogeno-
phene moiety. The other corresponding ligand coupling
product of 2a,b, ethane, could not be detected by NMR
experiments at room temperature.11e
2. Michalak, R. S.; Wilson, S. R.; Martin, J. C. J. Am. Chem.
Soc. 1984, 106, 7529–7539.
3. (a) Wittig, G.; Fritz, H. Liebigs Ann. Chem. 1952, 577, 39–
46; (b) Hellwinkel, D.; Fahrbach, G. Liebigs Ann. Chem.
1968, 712, 1–20; (c) Hellwinkel, D.; Fahrbach, G. Liebigs
Ann. Chem. 1968, 715, 68–73; (d) Hellwinkel, D. Ann. NY
Acad. Sci. 1972, 192, 158–166; (e) Smith, C. S.; Lee, J.-S.;
Titus, D. D.; Ziolo, R. F. Organometallics 1982, 1, 350–354.
4. (a) Sato, S.; Takahashi, O.; Furukawa, N. Coord. Chem.
Rev. 1998, 176, 483–514; (b) Furukawa, N.; Sato, S. In
Organosulfur Chemistry: Topics in Current Chemistry; Page,
P. C. B., Ed.; Springer: Berlin, 1999; Vol. 205, pp 89–129.
5. Gedridge, R. W., Jr.; Harris, D. C.; Higa, K. T.; Nissan,
R. A. Organometallics 1989, 8, 2817–2820.
Furthermore, we tried to prepare the 2,20-biphenylylene-
dimethylsulfurane (2c, X@S) [10–S–4(C4)] using di-
benzothiophene S-oxide 6 according to a method
similar to that for the corresponding selenurane 2b.
However, the corresponding sulfurane 2c could not be
detected by NMR experiments even at ꢀ90 °C, and only
dibenzothiophene 7 as a final product was observed by
NMR experiments at room temperature.11d,e
6. Hellwinkel, D.; Fahrbach, G. Chem. Ber. 1968, 101, 574–
584.
In conclusion, we reported that the formation of 2,20-
biphenylylenedimethyltellurane 2a and -selenurane 2b
having alkyl and aryl ligands was detected in the reac-
tions of the corresponding precursors 1 and 4 with meth-
yllithium by various NMR spectroscopies at low
temperature. In each chalcogenurane (IV), pseudorota-
tion between two ligands on the central atom should
take place rapidly on the NMR time scale even under
low temperature and chalcogenuranes 2 decomposed
at room temperature to give the corresponding dibenzo-
chalcogenophenes quantitatively. Further studies are in
progress to detect and isolate novel chalcogenanes hav-
ing other carbon ligands.
7. (a) Haaland, H.; Verne, H. P.; Volden, H. V.; Morrison,
J. A. J. Am. Chem. Soc. 1995, 117, 7554–7555; (b) Blake, A.
J.; Pulham, C. R.; Greene, T. M.; Downs, A. J.; Haaland,
A.; Verne, H. P.; Volden, H. V. J. Am. Chem. Soc. 1994,
116, 6043–6044; (c) Miyasato, M.; Minoura, M.; Yama-
moto, Y.; Akiba, K.-y. Chem. Lett. 2002, 288–289.
8. 2,20-Biphenylylenedimethyltellurane (2a); 1H NMR
(400 MHz, THF-d8, ꢀ78 °C) d 1.67 (s, with satellite peaks:
JH–Te = 36.0 Hz, 6H), 7.29 (t, J = 8.0 Hz, 2H, 4-ArH), 7.37
(t, J = 8.0 Hz, 2H, 5-ArH), 7.62 (d, J = 8.0 Hz, 2H, 3-ArH),
8.10 (d, J = 8.0 Hz, 2H, 6-ArH). 13C NMR (100 MHz,
THF-d8, ꢀ78 °C) d 20.7, 122.9, 128.6, 129.4, 132.0, 139.4,
144.6. 125Te NMR (126.3 MHz, THF-d8, ꢀ78 °C) d 154
(sept, JTe–H = 36.0 Hz, relative to Me2Te). 2,20-Biphenyl-
1
ylenedimethylselenurane (2b); H NMR (400 MHz, THF-
d8, ꢀ90 °C) d 1.74 (s, with satellite peaks: JH–Se = 17.5 Hz,
6H), 7.38 (t, J = 8.0 Hz, 2H, 4-ArH), 7.45 (t, J = 8.0 Hz,
2H, 3-ArH), 7.96 (d, J = 8.0 Hz, 2H, 3-ArH), 8.23 (d,
J = 8.0 Hz, 2H, 6-ArH). 13C NMR (100 MHz, THF-d8,
ꢀ90 °C) d 23.7, 123.8, 125.6, 126.9, 127.7, 139.3, 140.3. 77Se
17.5 Hz, relative to Me2Se). The 1H and 13C NMR chemical
shifts of both products 2a,b were assigned by the cross peaks
observed in the two dimensional NMR spectra.
Acknowledgments
This work was supported by the Ministry of Education,
Science, Sports, and Culture, Japan [Grant-in-Aid for
Scientific Research on Priority Areas: Grant No.
09239104, Grant-in-Aid for Scientific Research (B):
Grant No. 11440186, and Grant-in-Aid for Encourage-
ment of Young Scientists: Grant No. 10740286], and the
Fund of Tsukuba Advanced Research Alliance (TARA)
project (University of Tsukuba).
NMR (76 MHz, THF-d8, ꢀ90 °C) d 210 (sept, JSe–H
=
9. Sato, S.; Furukawa, N. Chem. Lett. 1994, 889–892.
10. Ogawa, S.; Sato, S.; Erata, T.; Furukawa, N. Tetrahedron
Lett. 1992, 33, 1915–1918.
11. (a) LaRochelle, R. W.; Trost, B. M. J. Am. Chem. Soc.
1971, 93, 6077–6086; (b) Harrington, D.; Weston, J.;
Jacobus, J.; Mislow, K. J. Chem. Soc., Chem. Commun.
1972, 1079–1080; (c) Hori, M.; Kataoka, T.; Shimizu, H.;
Miyazaki, M. Chem. Lett. 1972, 515–520; (d) Trost, B. M.;
Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288–5298; (e)
Hori, M.; Kataoka, T.; Shimizu, H.; Miyagaki, M. Chem.
Pharm. Bull. 1974, 22, 2020–2029.
Supplementary data
Supplementary data associated with this article can be