Page 5 of 7
Journal of the American Chemical Society
Chem. Eur. J. 2008, 14, 1654. (g) Zhang, Q.-Z.; Zhang, Z.-S.; Huang, Z.;
(13) Gong, J.; Chen, H.; Liu, X.-Y.; Wang, Z.-X.; Nie, W.; Qin, Y. Total
synthesis of atropurpuran. Nat. Comm. 2016, 7, 12183.
Zhang, C.-H.; Xi, S.; Zhang, M. Stereoselective total synthesis of
hetisine-type C20-diterpenoid alkaloids: spirasine IV and XI. Angew.
Chem., Int. Ed. 2018, 57, 937. (h) Kou, K. G. M.; Pflueger, J. J.; Kiho,
T.; Morrill, L. C.; Fisher, E. L.; Clagg, K.; Lebold, T. P.; Kisunzu, J. K.;
1
2
3
4
5
6
7
8
(14) Xie, S.; Chen, G.; Yan, H.; Hou, J.; He, Y.; Zhao, T.; Xu, J. 13-Step
total synthesis of atropurpuran. J. Am. Chem. Soc. 2019, 141, 3435.
(15) Nie, W.; Gong, J.; Chen, Z.; Liu, J.; Tian, D.; Song, H.; Liu, X.-Y.;
Qin, Y. Enantioselective total synthesis of (–)-arcutinine. J. Am.
Chem. Soc. 2019, 141, 9712.
(16) Weber, M.; Owens, K.; Sarpong, R. Atropurpuran–missing
biosynthetic link leading to the hetidine and arcutine C20-
diterpenoid alkaloids or an oxidative degradation product?
Tetrahedron Lett. 2015, 56, 3600.
Sarpong, R.
A benzyne insertion approach to hetisine-type
diterpenoid alkaloids: synthesis of cossonidine (davisine). J. Am.
Chem. Soc. 2018, 140, 8105.
(5) (a) Nishiyama, Y.; Han-ya, Y.; Yokoshima, S.; Fukuyama, T. Total
synthesis of (–)-lepenine. J. Am. Chem. Soc. 2014, 136, 6598. (b) Kou,
K. G. M.; Li, B. X.; Lee, J. C.; Gallego, G. M.; Lebold, T. P.; DiPasquale,
A. G.; Sarpong, R. Syntheses of denudatine diterpenoid alkaloids:
9
(17) (a) Sun, Y.; Li, R.; Zhang, W.; Li, A. Total synthesis of indotertine
A and drimentines A, F, and G. Angew. Chem., Int. Ed. 2013, 52, 9201.
(b) Sun, Y.; Chen, P.; Zhang, D.; Baunach, M.; Hertweck, C.; Li, A.
Bioinspired total synthesis of sespenine. Angew. Chem., Int. Ed. 2014,
53, 9012. (c) Lu, Z.; Yang, M.; Chen, P.; Xiong, X.; Li, A. Total
synthesis of hapalindole-type natural products. Angew. Chem., Int.
Ed. 2014, 53, 13840. (d) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li,
A. Total synthesis of taiwaniadducts B, C, and D, J. Am. Chem. Soc.
2014, 136, 8185. (e) Lu, Z.; Li, H.; Bian, M.; Li, A. Total synthesis of
epoxyeujindole A. J. Am. Chem. Soc. 2015, 137, 13764. (f) Li, H.; Chen,
Q.; Lu, Z.; Li, A. Total syntheses of aflavazole and 14-
hydroxyaflavinine, J. Am. Chem. Soc. 2016, 138, 15555. (g) Sun, Y.;
Meng, Z.; Chen, P.; Zhang, D.; Baunach, M.; Hertweck, C.; Li, A. A
concise total synthesis of sespenine, a structurally unusual indole
terpenoid from Streptomyces. Org. Chem. Front. 2016, 3, 368.
(18) (a) Gahman, T. C.; Overman, L. E. Stereoselective synthesis of
carbocyclic ring systems by pinacol-terminated Prins cyclizations.
Tetrahedron 2002, 58, 6473. (b) Pennington, L. D.; Overman, L. E.
Strategic use of pinacol-terminated Prins cyclizations in target-
oriented total synthesis. J. Org. Chem. 2003, 68, 7143. (c) Velthuisen,
E.; J.; Overman, L. E. Scope and facial selectivity of the Prins–pinacol
synthesis of attached rings. J. Org. Chem. 2006, 71, 1581.
(19) For the original version of this paper, see ChemRxiv Preprint
2019, doi: 10.26434/chemrxiv.8202242. Sarpong and co-workers
disclosed an elegant synthesis of (±)-arcutinidine, as we disclosed
this study.
(20) For recent examples, see: (a) Andrez, J.-C.; Giroux, M.-A.;
Lucien, J.; Canesi, S. Rapid formation of hindered cores using an
oxidative Prins process. Org. Lett. 2010, 12, 4368. (b) Reddy, B. V. S.;
Muralikrishna, K.; Yadav, J. S.; Babu, N. J.; Sirisha, K.; Sarma, A. V. S.
Tandem Prins/Wagner/Ritter process for the stereoselective
cochlearenine,
N-ethyl-1α-hydroxy-17-veratroyldictyzine,
and
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
paniculamine. J. Am. Chem. Soc. 2016, 138, 10830. (c) Kou, K. G. M.;
Kulyk, S.; Marth, C. J.; Lee, J. C.; Doering, N. A.; Li, B. X.; Gallego, G.
M.; Lebold, T. P.; Sarpong, R. A unifying synthesis approach to the
C18-, C19-, and C20-diterpenoid alkaloids. J. Am. Chem. Soc. 2017,
139, 13882. Also see ref. 3l.
(6) (a) Masamune, S. Total syntheses of diterpenes and diterpene
alkaloids. IV. Garryine. J. Am. Chem. Soc. 1964, 86, 290. (b) Nagata,
W.; Narisada, M.; Wakabayashi, T.; Sugasawa, T. Total synthesis of
dl-garryine and dl-veatchine. J. Am. Chem. Soc. 1964, 86, 929. (c)
Valenta, Z.; Wiesner, K.; Wong, C. M. Synthesis in the diterpene
alkaloid series - II. A total synthesis of the garrya alkaloids.
Tetrahedron Lett. 1964, 5, 2437. (d) Nagata, W.; Narisada, M.;
Wakabayashi, T.; Sugasawa, T. Total synthesis of dl-veatchine and dl-
garryine. J. Am. Chem. Soc. 1967, 89, 1499. (e) Wiesner, K.; Uyeo, S.;
Philipp, A.; Valenta, Z. Synthesis in the series of diterpene alkaloids.
IX. A new simple synthesis of veatchine. Tetrahedron Lett. 1968, 9,
6279.
(7) (a) Wiesner, K.; Ho, P.; Tsai, C. S. J.; Lam, Y. The Total synthesis
of racemic napelline. Can. J. Chem. 1974, 52, 2355. (b) Sethi, S. P.;
Atwal, K. S.; Marini-Bettolo, R. M.; Tsai, T. Y. R.; Wiesner, K. A
stereospecific synthesis of napelline. Can. J. Chem. 1980, 58, 1889.
(8) For recent synthetic studies, see: (a) Hamlin, A. M.; Cortez, F. J.;
Lapointe, D.; Sarpong, R. Gallium(III)-catalyzed cycloisomerization
approach to the diterpenoid alkaloids: construction of the core
structure for the hetidines and hetisines. Angew. Chem., Int. Ed. 2013,
52, 4854. (b) Hamlin, A. M.; Lapointe, D.; Owens, K.; Sarpong, R.
Studies on C20-diterpenoid alkaloids: synthesis of the hetidine
framework and its application to the synthesis of dihydronavirine
and the atisine skeleton. J. Org. Chem. 2014, 79, 6783. (c) Zhu, M.; Li,
X.-H.; Song, X.; Wang, Z.-X.; Liu, X.-Y.; Song, H.; Zhang, D.; Wang,
F.-P.; Qin, Y. Studies towards bioinspired synthesis of hetidine-type
C20-diterpenoid alkaloids. Chin. J. Chem. 2017, 35, 991. Also see ref. 3j,
l, m.
synthesis
of
(3-oxabicyclo[4.2.0]octanyl)amide
and
(1-(5-
aryltetrahydrofuran-3-yl)cyclobutyl)amide derivatives. Org. Biomol.
Chem. 2015, 13, 5532. For a conceptually relevant example from our
group, see ref. 17b, g.
(9) Zhou, S.; Guo, R.; Yang, P.; Li, A. Total synthesis of septedine and
7-deoxyseptedine. J. Am. Chem. Soc. 2018, 140, 9025.
(21) Carreño, M. C., Urbano, A.; Di Vitta, C. Enantioselective
Diels−Alder approach to C3-oxygenated angucyclinones from (SS)-2-
(p-tolylsulfinyl)-1,4-naphthoquinone. Chem. Eur. J. 2000, 6, 906.
(22) For strategically inspiring examples: see: (a) Bergmann, E. D.;
Becker, A. Diels–Alder reactions with 1-formylcyclohexene and 1-
formylcyclopentene. J. Am. Chem. Soc. 1959, 81, 221. (b) Stoltz, B. M.;
Kano, T.; Corey, E. J. Enantioselective total synthesis of
nicandrenones. J. Am. Chem. Soc. 2000, 122, 9044. (c) Jung, M. E.;
Lui, R. M. Studies toward the total syntheses of cucurbitacins B and
D. J. Org. Chem. 2010, 75, 7146. (d) Tartakoff, S. S.; Vanderwal, C. D.
A synthesis of the ABC tricyclic core of the clionastatins serves to
corroborate their proposed structures. Org. Lett. 2014, 16, 1458.
(23) We developed an improved resolution protocol using the
Candida antarctica lipase (see the SI). For a relevant example, see: Li,
J.; Zhang, W.; Zhang, F.; Chen, Y.; Li, A. Total synthesis of
daphniyunnine C (longeracinphyllin A). J. Am. Chem. Soc. 2017, 139,
14893.
(24) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A
greatly improved procedure for ruthenium tetroxide catalyzed
oxidations of organic compounds. J. Org. Chem. 1981, 46, 3936. For a
recent application by our group, see ref. 17d.
(25) See, Y. Y.; Herrmann, A. T.; Aihara, Y.; Baran, P. S. Scalable C–H
oxidation with copper: synthesis of polyoxypregnanes. J. Am. Chem.
Soc. 2015, 137, 13776.
(10) (a) Tashkhodzhaev, B.; Saidkhodzhaeva, S. A.; Bessonova, I. A.;
Antipin, M. Y. Arcutine-a new type of diterpene alkaloids. Chem.
Nat. Compd. 2000, 36, 79. (b) Saidkhodzhaeva, S. A.; Bessonova, I.
A.; Abdullaev, N. D. Arcutinine, a new alkaloid from Aconitum
arcuatum. Chem. Nat. Compd. 2001, 37, 466.
(11) Tang, P.; Chen, Q.-H.; Wang, F.-P. Atropurpuran, a novel
diterpene with an unprecedented pentacyclic cage skeleton, from
Aconitum hemsleyanum var. atropurpureum. Tetrahedron Lett. 2009,
50, 460.
(12) (a) Suzuki, T.; Sasaki, A.; Egashira, N; Kobayashi, S. A synthetic
study of atropurpuran: construction of a pentacyclic framework by
an intramolecular reverse-electron-demand Diels–Alder reaction.
Angew. Chem. Int. Ed. 2011, 50, 9177. (b) Hayashi, R.; Ma, Z. X.;
Hsung, R. P. A tandem 1,3-H-shift–6pelectrocyclization–cyclic 2-
amido-diene intramolecular Diels–Alder cycloaddition approach to
BCD-ring of atropurpuran. Org. Lett. 2012, 14, 252. (c) Chen, H.;
Zhang, D.; Xue, F.; Qin, Y. Synthesis of the atropurpuran A-ring via
an organocatalytic asymmetric intramolecular Michael addition.
Tetrahedron 2013, 69, 3141. (d) Chen, H.; Li, X.-H.; Gong, J.; Song, H.;
Liu, X.-Y.; Qin, Y. Synthetic approach to the functionalized tricyclic
core of atropurpuran. Tetrahedron 2016, 72, 347. (e) Jarhad, D. B.;
Singh, V. π4s
+
π2s Cycloaddition of spiroepoxycyclohexa-2,4-
dienone, radical cyclization, and oxidation−aldol−oxidation cascade:
synthesis of BCDE ring of atropurpuran. J. Org. Chem. 2016, 81, 4304.
(26) Uenishi, J.; Tatsumi, Y.; Kobayashi, N.; Yonemitsu, O. Highly
ACS Paragon Plus Environment