10.1002/ejoc.201700807
European Journal of Organic Chemistry
FULL PAPER
Table 1. Summary of photophysical properties of alkynylperylenes 4−15 in
CHCl3.
450 nm was determined by using 3-(trimethylsilylethynyl)perylene (4) (λex
= 450 nm, Φf = 0.88[5] in cyclohexane) as a reference compound and
calculated according to the following equation (Φsample
= Φstandard ×
2
[Astandard / Asample] × [Isample / Istandard] × [nsample / nstandard2]). In this equation,
Φsample and Φstandard are the quantum yields of a sample and standard,
respectively. Asample, Isample and nsample are the optical density, the
integrated emission intensity at the excitation wavelength, and the
refractive index for the sample, respectively. Astandard, Istandard and nstandard
are those for the standard.
Acknowledgements
We thank Ms. Yoshiko Kaneda (University of Toyama Central
Library) for helpful literature research. This work was supported
by a Grant-in-Aid for Scientific Research on Innovative Areas
“Stimuli-responsive Chemical Species for the Creation of
Functional Molecules (No.2408)” (JSPS KAKENHI Grant
Number JP15H00932)
Keywords: Hydrocarbons • Alkynes • Fluorescence • UV/Vis
spectroscopy • Photophysics
a
-5
[Alkynylperylene] = 1.0 × 10 M, each λabs is an absorption band appearing
b
-6
[1]
[2]
a) M. Gsänger, D. Bialas, M. Stolte, F. Würthner, Adv. Mater. 2016, 28,
3615–3645. b) V. Settels, A. Schubert, M. Tafipolski, W. Liu, W. Stehr,
A. K. Topczak, J. Pflaum, C. Deibel, R. F. Fink, V. Engel, B. Engels, J.
Am. Chem. Soc. 2014, 136, 9327−9337.
at the longest wavelength. [Alkynylperylene] = 1.0 × 10 M, λex = 450 nm,
each λem is an emission band appearing at the shortest wavelength. c Each Φf
was determined by using 3-(trimethylsilylethynyl)perylene (Φf
=
0.88[5] in
cyclohexane) as a reference compound.
a) D. Di, L. Yang, J. M. Richter, L. Meraldi, R. M. Altamimi, A. Y.
Alyamani, D. Credgington, K. P. Musselman, J. L. MacManus-Driscoll,
R. H. Friend, Adv. Mater. 2017, DOI: 10.1002/adma.201605987. b) G.
Li, Y. Zhao, J. Li, J. Cao, J. Zhu, X. W. Sun, Q. Zhang, J. Org. Chem.
2015, 80, 196−203. c) E. Torres, R. Bogel-Lukasik, M. N. Berberan-
Santos, S. Höfle, A. Colsmann, M. J. Brites, RSC Adv. 2016, 6,
107180−107188.
Conclusions
In summary, we developed a reliable and reproducible method
to separate the two regioisomers, 3,9-dibromoperylene and
3,10-dibromoperylene
by
sequential
and
repeated
[3]
[4]
a) P. Singh, L. S. Mittal, G. Bhargava, S. Kumar, Chem. Asian J. 2017,
12, 890−899. b) O. S. Kwon, H. S. Song, H. Kim, N. Artzi, J.-H. Kim,
ACS Nano 2016, 10, 1512−1521. c) Y. Qiao, J. Chen, X. Yi, W. Duan,
B. Gao, Y. Wu, Tetrahedron Lett. 2015, 56, 2749–2753.
recrystallization. Their purities were guaranteed on the basis of
the 1H NMR spectra and of the highest melting temperatures. In
addition, various alkynylperylenes were prepared from the
dibromoperylenes, and their photophysical properties were
investigated in detail. We would feel amply rewarded if the
present study proved helpful to whom it may concern. Of course,
the rotaxane formation using regioisomerically pure
dialkynylperylenes is now underway in our laboratory.
a) M. Koch, M. Myahkostupov, D. G. Oblinsky, S. Wang. S.
Garakyaraghi, F. N. Castellano, G. D. Scholes, J. Am. Chem. Soc.
2017, 139, 5530−5537. b) R. Ribas, R. P. Steer, R. Rüther, Chem.
Phys. Lett. 2014, 605–606, 126–130. c) H. Maeda, Y. Nanai, K. Mizuno,
J. Chiba, S. Takeshima, M. Inouye, J. Org. Chem. 2007, 72,
8990−8993.
[5]
M. Yamaji, H. Maeda, Y. Nanai, K. Mizuno, Chem. Phys. Lett. 2012,
536, 72−76.
[6]
[7]
Z. Alois, L. Franz, W. Otoo, Chem. Ber. 1925, 58, 323−329.
T. Uchida, K. Kozawa, Y. Nagao, T. Misonoo, Bull. Chem. Soc. Jpn.
1979, 52, 1547−1548.
Experimental Section
General Methods
[8]
[9]
a) J.-H. Kim, H. U. Kim, D. Mi, S.-H. Jin, W. S. Shin, S. C. Yoon, I.-N.
Kang, D.-H. Hwang, Macromolecules 2012, 45, 2367−2376. b) J.-H.
Kim, C. E. Song, I.-N. Kang, W. S. Shin, D.-H. Hwang, Chem. Commun.
2013, 49, 3248−3250. c) A. Matsumoto, M. Suzuki, H. Hayashi, D.
Kazuhara, J. Yuasa, T. Kawai, N. Aratani, H. Yamada, Chem.−Eur. J.
2016, 22, 14462−14466.
NMR spectra were recorded using tetramethylsilane (TMS) as an internal
reference on a JEOL ECA 500 II at 500 MHz (1H) and a JEOL ECA 500 II
at 125 MHz (13C) spectrometers at 25 °C or 40 °C. IR spectra were
measured on a JASCO FT/IR-460 plus spectrometer. Mass spectra were
obtained by the ESI method on a JEOL JMS-T100LC mass spectrometer.
Absorption and fluorescence spectra were recorded using a JASCO V-
560 and JASCO FP-6500 spectrometers, respectively. Melting points
were determined with Yanaco MP-500D and not corrected.
a) P. Schlichting, U. Rohr, K. Müllen, Liebigs Ann. 1997, 395−407. b) C.
Wohnhaas, V. Mailänder, M. Dröge, M. A. Filatov, D. Busko, Y.
Avlasevich, S. Baluschev, T. Miteva, K. Landfester, A. Turshatov,
Macromol. Biosci. 2013, 13, 1422−1430. c) E. P. Jackson, T. J. Sisto, E.
R. Darzi, R. Jasto, Tetrahedron 2016, 72, 3754−3758. d) F. Marsico, A.
Turshatov, R. Peköz, Y. Avlasevich, M. Wagner, K. Weber, D. Donadio,
Spectroscopic Measurements
Steady state absorption and fluorescence were recorded at 25 °C using a
10 mm path length cell. The fluorescence quantum yields (Φf) of 4-15 at
This article is protected by copyright. All rights reserved.