(1.8), 273 (2), 229 (2.2), 217 (8), 203 (6), 135 (36), 93 (50) and 81
(100); m/z(CI, isobutane) 483 (36%), 481 (38), 465 (95) and 463
(100); (Found: C, 67.31; H, 9.45; Br, 16.61; O, 6.66. C27H45BrO2
requires: C, 67.34; H, 9.42; Br, 16.59; O, 6.65%).
argon. Tetrabutylammonium fluoride (1.0 M solution in THF,
1.15 equiv., 135 µl, 0.135 mmol) was added and the mixture was
stirred for 15 min at 0 ЊC and concentrated in vacuo. It was then
poured into cold 10% NH4Cl-diethyl ether (1 : 1, 50 cm3)
and extracted with diethyl ether (3 × 30 cm3). The combined
extracts were washed with saturated brine (2 × 30 cm3), dried
with anhydrous sodium sulfate, filtered and evaporated in
vacuo. The resulting oil was purified by flash chromatography
(petroleum ether–diethyl ether, 99.8 : 0.2 to remove impurities,
then 95 : 5) to give 32 mg (77%) of the (18Z)-methylidyne
derivative 23a, as a colourless oil. νmax(CCl4)/cmϪ1 3310, 2965,
2930, 2860, 1450, 1380 and 1250; δH(200 MHz, CDCl3) 1.26 and
1.31 (6 H, 2 s, epoxidic CH3), 1.58–1.72 (11 H, m, allylic CH3
C17 squalene aldehyde bromohydrin: (4E,8E )-12-bromo-13-
hydroxy-5,9,13-trimethyltetradeca-4,8-dienal 21 (Scheme 3)
Compound 21 was obtained and purified using the method
described for 20, starting from the dioxolane 18, in 73% yield.
νmax(film)/cmϪ1 3500–3400, 2970, 2920, 2850, 1725, 1445, 1385
and 1115; δH(200 MHz, CDCl3) 1.28 and 1.32 [6 H, 2 s,
(CH3)2COH], 1.50–1.72 (8 H, m, allylic CH3 and CH2CHBr),
1.88–2.20 (8 H, m, allylic CH2), 2.35–2.41 (2 H, m, CH2CHO),
3.85 (1 H, m, CHBr), 5.02–5.20 (2 H, m, vinylic CH) and 9.77
(1 H, m, CHO); m/z(EI) 346 (3%), 344 (3), 328 (3), 326 (3), 302
(1), 300 (1), 264 (5), 243 (4), 229 (2), 203 (1), 135 (32), 107 (15),
93 (35) and 81 (100); (Found: C, 59.10; H, 8.47; Br, 23.09;
O, 9.25. C17H29BrO2 requires: C, 59.13; H, 8.47; Br, 23.14; O,
9.27%).
and epoxidic CH2), 1.92–2.22 (14 H, m, allylic CH2), 2.71 (1 H,
᎐
t, J 6.3, epoxidic CH), 3.08 (1 H, d, J 2.3, C᎐CH, Z isomer),
᎐
5.06–5.21 (3 H, m, vinylic CH), 5.44 (1 H, br d, Z CH᎐CH–
᎐
᎐
᎐
C᎐CH) and 5.97 (1 H, dt, J 11.2 and J 6.9, Z CH᎐CH–C᎐CH);
᎐
᎐
᎐
m/z(EI) 354 (0.2%), 325 (1.2), 297 (2), 279 (3), 203 (6), 149 (44),
135 (50), 81 (100); m/z(CI, isobutane) 355 (100%); (Found: C,
84.72; H, 10.80; O, 4.48. C25H38O requires: C, 84.69; H, 10.80;
O, 4.51%).
(3Z,7E,11E,15E )-19,20-Epoxy-7,12,16,20-tetramethyl-1-
(trimethylsilyl)henicosa-3,7,11,15-tetraen-1-yne 22a and
(3E,7E,11E,15E )-19,20-epoxy-7,12,16,20-tetramethyl-1-
(trimethylsilyl)henicosa-3,7,11,15-tetraen-1-yne 22b (Scheme 4)
(18E )-29-Methylidyne-20,21,22,23,24,30-hexanor-2,3-oxido-
squalene: (3E,7E,11E,15E )-19,20-epoxy-7,12,16,20-tetra-
methylhenicosa-3,7,11,15-tetraen-1-yne 23b (Scheme 4)
In a three-necked flask containing anhydrous THF (25 cm3),
[3-(trimethylsilyl)prop-2-ynyl]triphenylphosphonium bromide
(1.2 equiv., 465 mg, 1.02 mmol) was suspended at Ϫ80 ЊC,
under a flux of dry nitrogen, with stirring. Butyllithium (1.6 M
solution in hexane, 3 equiv., 1.6 cm3, 2.55 mmol) was added,
during which the reaction mixture turned red. It was left for
15 min at Ϫ40 ЊC and then cooled to Ϫ80 ЊC. C22 squalene
aldehyde monobromohydrin 20 (1 equiv., 351 mg, 0.85 mmol)
in anhydrous THF (2 cm3) was added after 5 min and allowed
to react for 1 h at Ϫ80 ЊC, during which time the colour turned
orange. It was then gradually allowed to reach room tempera-
ture, poured into cold 10% NH4Cl–diethyl ether (1 : 1, 50 cm3)
and extracted with diethyl ether (3 × 30 cm3). The combined
extracts were washed with saturated brine (2 × 30 cm3), dried
with anhydrous sodium sulfate, filtered and evaporated in vacuo
at ϩ35 ЊC. The resulting oil was purified by flash chroma-
tography (petroleum ether to remove impurities, then petroleum
ether–diethyl ether, 99 : 1, 98 : 2 and finally 95 : 5) to give 36 mg
of the Z isomer of silyl acetylene 22a and 73 mg of the E isomer
22b, as colourless oils, in 30% total yield (E : Z = 2 : 1).
E-isomer 23b was obtained starting from the silyl derivative
22b, using the method described for compound 23a, in 75%
yield. νmax(CCl4)/cmϪ1 3310, 2970, 2930, 2860, 1450, 1380 and
1250; δH(200 MHz, CDCl3) 1.26 and 1.31 (6 H, 2 s, epoxidic
CH3), 1.58–1.72 (11 H, m, allylic CH3 and epoxidic CH2),
1.92–2.22 (14 H, m, allylic CH2), 2.71 (1 H, t, J 6.3, epoxidic
᎐
CH), 2.78 (1 H, d, J 2.2, C᎐CH, E isomer), 5.06–5.21 (3 H,
᎐
᎐
m, vinylic CH), 5.48 (1 H, br d, E CH᎐CH–C᎐CH) and 6.23
(1 H, dt, J 16.1 and J 6.9, E CH᎐CH–C᎐CH); m/z(EI) 354
᎐
᎐
᎐
᎐
᎐
(0.2%), 325 (1.2), 297 (2), 279 (3.2), 203 (6), 149 (40), 135 (55),
81 (100); m/z(CI, isobutane) 355 (100%); (Found: C, 84.66;
H, 10.82; O, 4.49. C25H38O requires: C, 84.69; H, 10.80; O,
4.51%).
(3Z,7E,11E,15E,19E )-23,24-Epoxy-7,11,16,20-tetramethyl-1-
(trimethylsilyl)pentacosa-3,7,11,15,19-pentaen-1-yne 24a and
(3E,7E,11E,15E,19E )-23,24-epoxy-7,11,16,20-tetramethyl-1-
(trimethylsilyl)pentacosa-3,7,11,15,19-pentaen-1-yne 24b
(Scheme 5)
22a (Z): νmax(KBr pellet)/cmϪ1 2970, 2920, 2850, 1450, 1380
and 1245; δH(200 MHz, CDCl3) 0.19 [9 H, s, (CH3)3Si], 1.26 and
1.31 (6 H, 2 s, epoxidic CH3), 1.56–1.70 (11 H, m, allylic CH3
and epoxidic CH2), 1.90–2.20 (14 H, m, allylic CH2), 2.71 (1 H,
Compounds 24a and 24b were obtained in 34% total yield
(E : Z = 2 : 1) and separated using the method described for the
silyl derivatives 22a and 22b, using the C27 squalene aldehyde
bromohydrin 19 instead of the C22 squalene aldehyde bromo-
hydrin 20.
t, J 6.3, epoxidic CH), 5.05–5.20 (3 H, m, vinylic CH), 5.47
24a (Z): νmax(KBr pellet)/cmϪ1 2970, 2920, 2850, 1450, 1380
and 1245; δH(200 MHz, CDCl3) 0.19 [9 H, s, (CH3)3Si], 1.26 and
1.31 (6 H, 2 s, epoxidic CH3), 1.56–1.70 (14 H, m, allylic CH3
and epoxidic CH2), 1.94–2.22 (18 H, m, allylic CH2), 2.71 (1 H,
᎐
(1 H, br d, Z CH᎐CH–C᎐C) and 5.92 (1 H, dt, J 10.7 and J 6.8,
᎐
᎐
᎐
Z CH᎐CH–C᎐C); m/z(CI, isobutane) 427 (100%); (Found: C,
᎐
᎐
78.82; H, 10.85; O, 3.76; Si, 6.55. C28H46OSi requires: C, 78.80;
H, 10.86; O, 3.75; Si, 6.58%).
22b (E): νmax(KBr pellet)/cmϪ1 2970, 2920, 2850, 1450, 1380
and 1245; δH(200 MHz, CDCl3) 0.19 [9 H, s, (CH3)3Si], 1.26 and
1.31 (6 H, 2 s, epoxidic CH3), 1.56–1.70 (11 H, m, allylic CH3
and epoxidic CH2), 1.90–2.20 (14 H, m, allylic CH2), 2.71 (1 H,
t, J 6.3, epoxidic CH), 5.00–5.16 (4 H, m, vinylic CH), 5.47
᎐
(1 H, br d, Z CH᎐CH–C᎐C) and 5.92 (1 H, dt, J 10.7 and J 6.8,
᎐
᎐
᎐
Z CH–CH–C᎐C); m/z(EI) 494 (1%), 479 (0.5), 451 (0.7), 421
᎐
(0.8), 341 (3), 273 (6), 267 (2), 245 (2), 225 (3), 204 (12), 199
(18), 189 (33), 135 (35), 93 (47), 81 (80) and 73 (100); (Found:
C, 80.07; H, 11.02; O, 3.25; Si, 5.68. C33H54OSi requires: C,
80.09; H, 11.00; O, 3.23; Si, 5.68%).
t, J 6.3, epoxidic CH), 5.05–5.20 (3 H, m, vinylic CH), 5.51
᎐
(1 H, br d, E CH᎐CH–C᎐C) and 6.20 (1 H, dt, J 15.9 and J 6.8,
᎐
᎐
᎐
E CH᎐CH–C᎐C); m/z(CI, isobutane) 427 (100%); (Found: C,
᎐
᎐
24b (E): νmax(KBr pellet)/cmϪ1 2965, 2920, 2850, 1450, 1385
and 1245; δH(200 MHz, CDCl3) 0.19 [9 H, s, (CH3)3Si], 1.26 and
1.31 (6 H, 2 s, epoxidic CH3), 1.56–1.70 (14 H, m, allylic CH3
and epoxidic CH2), 1.94–2.22 (18 H, m, allylic CH2), 2.71 (1 H,
78.81; H, 10.88; O, 3.74; Si, 6.55. C28H46OSi requires: C, 78.80;
H, 10.86; O, 3.75; Si, 6.58%).
(18Z )-29-Methylidyne-20,21,22,23,24,30-hexanor-2,3-oxido-
squalene: (3Z,7E,11E,15E )-19,20-epoxy-7,12,16,20-tetra-
methylhenicosa-3,7,11,15-tetraen-1-yne 23a (Scheme 4)
t, J 6.3, epoxidic CH), 5.00–5.16 (4 H, m, vinylic CH), 5.51
᎐
(1 H, br d, E CH᎐CH–C᎐C) and 6.21 (1 H, dt, J 15.9 and J 6.8,
᎐
᎐
᎐
E CH᎐CH–C᎐C); m/z(EI) 494 (1.2%), 479 (0.6), 451 (0.6), 421
᎐
᎐
(Z)-Silyl acetylene 22a (1 equiv., 50 mg, 0.117 mmol) was dis-
solved in anhydrous THF (3 cm3) at 0 ЊC under a flux of dry
(0.8), 341 (4), 273 (5), 267 (2), 225 (2), 204 (10), 199 (18), 189
(35), 93 (47), 81 (90) and 73 (100); (Found: C, 80.11; H, 11.02;
1484
J. Chem. Soc., Perkin Trans. 1, 2002, 1477–1486