B.S. Singh et al. / Ultrasonics Sonochemistry 20 (2013) 633–639
639
ꢂ Net energy supplied for processing of material using sonochem-
ical method = Actual energy delivered by horn during sonica-
tion/Total reaction mass processed = 4.33 (kJ)/8.24 (g)
[2] H. Zang, Y. Zhang, Y. Zang, B.W. Cheng, An efficient ultrasound-promoted
method for the one-pot synthesis of 7,10,11,12-tetrahydrobenzo[c]acridin-
8(9H)-one derivatives, Ultrason. Sonochem. 17 (2010) 495–499.
[
3] M.R.P. Heravi, An efficient synthesis of quinolines derivatives promoted by a
room temperature ionic liquid at ambient conditions under ultrasound
irradiation via the tandem addition/annulation reaction of o-aminoaryl
¼
0:525 ðkJ=gÞ
ðAÞ
ketones with a-methylene ketones, Ultrason. Sonochem. 16 (2009) 361–366.
[
[
4] R.M. Srivastava, R.A. Filho Neves, C.A. da Silva, A.J. Bortoluzzi, First ultrasound-
mediated one-pot synthesis of N-substituted amides, Ultrason. Sonochem. 16
A.1.2. Energy delivered during conventional method
(
2009) 737–742.
5] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of
nanostructured titanium dioxide from anatase-to-rutile via combined
ultrasound assisted sol–gel technique, Ultrason. Sonochem. 17 (2010) 409–
ꢂ Voltage input in overhead stirrer (Model REMI Motors RQ-129/
D Rajendra Electrical Industries Ltd., Vasai, India.
4
15.
6] A. Duarte, W. Cunico, C.M.P. Pereira, A.F.C. Flores, R.A. Freitag, G.M. Siqueira,
Ultrasound promoted synthesis of thioesters from 2-
mercaptobenzoxa(thia)zoles, Ultrason. Sonochem. 17 (2010) 281–283.
ꢂ Current measured using digital multimeter (KUSAM-MECO
[
Model 2718, Kusam Electrical Industries Ltd., Mumbai,
ꢁ3
India) = 37 mA = 37 ꢀ 10 A.
ꢂ Power input in magnetic stirrer = Voltage input ꢀ Current mea-
[7] C. Petrier, J.-L. Luche, Synthetic Organic Sonochemistry, in: J.-L. Luche (Ed.),
Plenum Press, New York, 1998, pp. 53–56. Chapter 2.
ꢁ3
sured = 230 (V) ꢀ 37 ꢀ 10 (A) = 8.51 W (J/s).
[
8] B. Toukoniitty, E. Toukoniitty, P. Maki-Arvela, J.-P. Mikkola, T. Salmi, D.
Murzim, P. Yu, J. Kooyman, Effect of ultrasound in enantioselective
hydrogenation of 1-phenyl-1,2-propanedione: comparison of catalyst
activation, solvents and supports, Ultrason. Sonochem. 13 (2006) 68–75.
9] B.S. Singh, H.R. Lobo, K.J. Jarag, D.V. Pinjari, A.B. Pandit, G.S. Shankarling,
Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for
ꢂ Efficiency of magnetic stirrer taken for the calculation = 40%
(
estimated independently using calorimetric studies).
ꢂ Actual power input in overhead stirrer = Power input in mag-
netic stirrer (W) ꢀ 40/100 =8.51 (W) ꢀ 40/100 = 3.404 W (J/s).
ꢂ Time required for completion of reaction = 3.5 h (12,600 s).
ꢂ Energy delivered during conventional method for stir-
ring = Power input in magnetic stirrer ꢀ Time required for com-
pletion of reaction = 3.404 J/s ꢀ 3.5 h ꢀ 3600 s/h = 42890 J =
[
[
[
10] K.J. Jarag, D.V. Pinjari, A.B. Pandit, G.S. Shankarling, Synthesis of chalcone (3-(4-
fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one): advantage of
sonochemical method over conventional method, Ultrason. Sonochem. 18
2011) 617–623.
11] C.G. Anna, I.M.B. Helena, G.F. Scott, E.B. Clifton, R.C. Brent, Antimycobacterial
natural products: synthesis and preliminary biological evaluation of the
oxazole-containing alkaloid texaline, Tetrahedron Lett. 46 (2005) 7355–7357.
12] C. George, J.F. Michael, Derivatives of 2-aminooxazoles showing
antiinflammatory activity, J. Med. Chem. 14 (1971) 1075–1077.
(
4
2.89 kJ.
ꢂ Quantity of material processed = Quantity of 2-bromo-1-phe-
nylethanone + Quantity of urea + Quantity of DES = 1 (g) + 0.24
[
[
(
g) + 7 (g) = 8.24 (g).
ꢂ Energy supplied for heating reaction mixture to 65 °C from
13] H.H. Wasserman, R.J. Gambale, Synthesis of (+)-antimycin A3. Use of the
oxazole ring in protecting and activating functions, J. Am. Chem. Soc. 107
room temperature (35 °C)
(
1985) 1423–1424.
a
¼
¼
¼
¼
Mass ꢀ C
p
ꢀ
D
T
[14] A. Floersheimer, M.R. Kula, The application of N -formyl amino acid esters in
the enzyme-catalyzed peptide synthesis, Monatsh. Chem. 119 (1988) 1323–
8:24 ꢀ 1 ꢀ ð65 ꢁ 35Þ ðC
247:2 cal
p
ꢃ 1Þ
1331.
[15] I.H. Leaver, B. Milligam, Fluorescent whitening agents: a survey (1974–82),
Dyes Pigm. 5 (1984) 109–144.
16] D.C Palmer, S. Venkatraman, Synthesis, Reactions and Spectroscopy: Part A,
Wiley & Sons, Hoboken, NJ, 2004.
17] Andrew P. Abbott, Glen Capper, David L. Davies, Raymond K. Rasheed, Vasuki
Tambyrajah, Novel solvent properties of choline chloride/urea mixtures,
Chem. Comm. (2003) 70.
[18] A.P. Abbott, T.J. Bell, S. Handa, B. Stoddart, O-Acetylation of cellulose and
monosaccharides using a zinc based ionic liquid, Green Chem. 7 (2005) 705–
1034 Joules
ð1 cal ¼ 4:184 JoulesÞ
[
ꢂ Total energy supplied for heating reaction mixture to 65 °C from
room temperature (35 °C)
[
ꢄ
¼
Energy supplied for heating reaction mixture to 65 C
ꢄ
from room temperature ð35 CÞ ꢀ 3:5 h ꢀ ð1=30Þ h
707.
ꢀ
ð30 min are required for coolingÞ
[19] B. Singh, H. Lobo, G. Shankarling, Selective N-alkylation of aromatic primary
amines catalyzed by bio-catalyst or deep eutectic solvent, Catal. Lett. 141
¼
¼
1034 Joules ꢀ 10
(
2011) 178–182.
[
[
[
20] H.R. Lobo, B.S. Singh, G.S. Shankarling, Deep eutectic mixtures and glycerol: a
simple, environmentally benign and efficient catalyst/reaction media for
21] B.S. Singh, H.R. Lobo, G.S. Shankarling, Choline chloride based eutectic
solvents: magical catalytic system for carbon–carbon bond formation in the
rapid synthesis of b-hydroxy functionalized derivatives, Catal. Commun. 24
10; 340 Joules ¼ 10:34 kJ
ꢂ Net energy delivered during conventional method = Energy
delivered during conventional method for stirring + Total
energy supplied for heating reaction mixture to 65 °C from
room temperature (35 °C) = 42.89 + 10.34 = 53.23 kJ
ꢂ Net energy supplied for processing of material using conven-
tional method = Net energy delivered during conventional
method/Quantity of material processed = 53.23 (kJ)/8.24 (g)
(
2012) 70–74.
22] H.R. Lobo, B.S. Singh, G.S. Shankarling, Bio-compatible eutectic mixture for
multi-component synthesis: a valuable acidic catalyst for synthesis of novel
2,3-dihydroquinazolin-4(1H)-one derivatives, Catal. Commun. 27 (2012) 179.
[
[
23] C.A. Nkuku, R.J. LeSuer, Electrochemistry in deep eutectic solvents, J. Phys.
Chem. B 111 (2007) 13271.
24] J.C. Lee, Y.H. Bae, S.K. Chang, Effect of alpha-halogenation of carbonyl
compounds by N-bromosuccinimide and N-chlorosuccinimide, Bull. Kor.
Chem. Soc. 24 (2003) 407–408.
25] A.P. Abbott, G. Capper, D.L. Davies, H.L. Munro, R.K. Rasheed, V. Tambyrajah,
Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing
quaternary ammonium salts with functional side chains, Chem. Commun.
¼
6:46 ðkJ=gÞ
ðBÞ
A.1.3. Percentage of energy saved (%)
[
ꢂ Net energy saved = (Net energy supplied for processing of mate-
rial using conventional method (B)) ꢁ (Net energy supplied for
processing of material using sonochemical method (A))/(Net
energy supplied for processing of material using conventional
method (B)) ꢀ 100 = (6.46 ꢁ 0.52)/8.24 ꢀ 100 = 72.08%
(
2001) 2010–2011.
[
[
26] B.K. Pattanayak et al., J. Ind. Chem. Soc. 55 (1978) 264–267.
27] Stauss et al., Chimia 27 (1973) 99.
[28] D.V. Pinjari, A.B. Pandit, Room temperature synthesis of crystalline CeO
2
nanopowder: advantage of sonochemical method over conventional method,
Ultrason. Sonochem 18 (2011) 1118–1123.
[
29] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Synthesis of zirconium dioxide
by ultrasound assisted precipitation: effect of calcination temperature,
Ultrason. Sonochem. 18 (2011) 1128–1137.
References
[
1] E. Kowsari, M. Mallakmohammadi, Ultrasound promoted synthesis of
quinolines using basic ionic liquids in aqueous media as a green procedure,
Ultrason. Sonochem. 18 (2011) 447–454.