Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
2
shifted to 560 nm (green) in 10 s. Interestingly, the reflection
abruptly jumped to 491 nm (blue) around 15 s because of the
phase transition from BP I to BP II. Thus dynamic red, green
and blue color reflections were achieved from the BP by NIR
laser irradiation for the first time. Longer irradiation with NIR-
light only resulted in a continuous decrease in reflection
intensity at the BP II state and, as expected, the reflection
completely disappeared after the sample transformed into the
isotropic phase.
DOI: 10.1039/C5CC06146F
5054; b) H. J. Coles, M. N. Pivnenko, Nature 2005, 436, 997-
1000; c) X. Chen, L. Wang, C. Li, C. J. Xiao, H. Ding, X. Liu, X.
Zhang, W. He, H. Yang, Chem. Comm. 2013, 49, 10097-10099.
3
4
a) D. C. Wright, N. D. Mermin, Rev. Mod. Phys. 1989, 61,
385-432; b) H. Kikuchi, Struct. Bonding 2008, 128, 99-117.
a) Y. Xia, B. Gates, Z.-Y. Li, Adv. Mater. 2001, , 409-413; b) J.
Ge, Y. Yin. Angew. Chem. Int. Ed. 2011, 50, 1492-1522.
H. K. Bisoyi, Q. Li, Acc. Chem. Res. 2014, 47 3184-3195.
a) L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, Q. Li, J.
Am. Chem. Soc. 2014, 136 4480-4483; b) L. Wang, H. Dong, Y.
Li, R. Liu, Y.-F. Wang, H. K. Bisoyi, L.-D. Sun, C.-H. Yan, Q. Li.
Adv. Mater. 2015, 27 2065-2069. c) K. G. Gutiérrez-Cuevas, L.
6
5
6
,
,
,
Wang, C. Xue, S. Gautam, S. Kumar, A. Urbas, Q. Li, Chem.
Comm. 2015, 51, 9845-9848.
a) H. Yang, J. Liu, Z. Wang, L. Guo, P. Keller, B. Lin, Y. Sun, X.
Zhang. Chem. Comm. 2015, 51, 12126-12129; b) H. Chen, L.
7
Shao, J. Wang, Chem. Soc. Rev. 2013, 42
B. Nikoobakht, M. A. El-Sayed, Chem. Mater. 2003, 15
1962
a) V. Shanmugam, S. Selvakumar, C.-S. Yeh, Chem. Soc. Rev.
2014, 43 6254-6287 b) I. Gorelikov, L. M. Field, E.
Kumacheva, J. Am. Chem. Soc. 2004, 126 15938-15939.
10 C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao,
L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109
13857-13870
11 a) M. Gluodenis, C. A. Foss, J. Phys. Chem. B 2002, 106
, 2679-2724.
8
9
, 1957-
.
Figure 6. (a) Response time-dependence on the temperature and the
concentration of M-GNRs. Note: T = TIso-T, where TIso is the isotropic
clearing point of LCs; (b) Reflection spectra of BPs doped with 0.3 wt%
M-GNRs upon irradiation with 808 nm NIR laser.
,
;
,
In conclusion, a NIR-light-responsive self-organized 3D
photonic superstructure was fabricated by incorporating new
hydrophobic mesogen-functionized GNRs into a BP LC medium
composed of commercially available components. The
introduction of M-GNRs was found to be beneficial in
stabilizing the cubic nanostructure. Importantly, the resultant
3D photonic nanostructures could be switched between body-
centered cubic and simple cubic symmetry under the
irradiation of 808 nm NIR laser due to the significant
photothermal effect from M-GNRs. The reverse process occurs
upon removal of the NIR laser irradiation. This is the first
observation of BP phase transition enabled by NIR light.
Furthermore, reversible dynamic NIR-light-directed red, green,
blue (RGB) reflections of the light-driven 3D soft photonic
crystals were for the first time demonstrated. The results of
this research reported here are expected to provide a route to
spatially and temporally manipulate the 3D self-organized
nanostructures and their dynamic photonic properties, thus
paving way to cost-effective large-scale 3D photonic crystals in
,
.
,
9484-9489; b) X. Huang, S. Neretina, M. A. El-Sayed, Adv.
Mater. 2009, 21, 4880-4910.
12 a) H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama,
Nature Mater. 2002,
1, 64-68; b) D. Voloschenko, O. P.
Pishnyak, S. V. Shiyanovskii, O. D. Lavrentovich, Phys. Rev. E
2002, 65, 060701; c) J. Xiang, O. D. Lavrentovich, Appl. Phys.
Lett. 2013, 103, 051112; d) F. Castles, F. V. Day, S. M. Morris,
D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. Hands,
S. S. Choi, R. H. Friend, H. J. Coles, Nat. Mater. 2012, 11, 99-
603.
13 a) L. Wang, W. He, X. Xiao, F. Meng, Y. Zhang, P. Yang, L.
Wang, J. Xiao, H. Yang, Y. Lu, Small. 2012,
8
,
2189-2193; b) J.
, 7956-
7959; c) L. Wang, W. He, Q. Wang, M. Yu, X. Xiao, Y. Zhang,
M. Ellahi, D. Zhao, H. Yang, L. Guo, J. Mater. Chem. C 2013, 1
6526-6531
M. Wong, J. Y. Hwang, L. C. Chien, Soft Matter 2011,
7
,
.
14 a) P. Crooker, in Chirality in Liquid Crystals, Springer, New
York, 2001; b) R. J. Miller, H. F. Gleeson, J. E. Lydon. Phys. Rev.
E
1999, 59, 1821-1827.
a
remotely programmable technique and leading to
applications in areas of optical devices and critical components
for next-generation of optical communication technology.
Q. Li thanks the AFOSR (FA9950-09-1-0254 and FA9550-12-
1-0037) and the CONACyT Scholarship 211982 to KGC. ODL
thanks the NSF DMR 1121288. GS and SK’s X-ray diffraction
was supported by the NSF under its US Ireland R&D
Partnership grant DMR-1410649. The TEM data were obtained
at the (cryo) TEM facility at the Liquid Crystal Institute, Kent
State University, supported by the Ohio Research Scholars
Program Research Cluster on Surfaces in Advanced Materials.
Notes and references
1
a) Q. Li (Ed.), Intelligent Stimuli-Responsive Materials: From
Well-Defined Nanostructures to Applications, John Wiley &
Sons, Hoboken, New Jersey, 2013; b) L. Wang, Q. Li, Adv.
Funct. Mater. 2015, 25, DOI: 10.1002/adfm.201502071.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins