3
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
and withdrawing substituents at the para-position of the
benzene ring in 1 were successfully transformed into the
corresponding propargylic etherified products (3b, 3c, and
3e-g) in moderate to high yields with an excellent
enantioselectivity. Introduction of a methyl group at the
meta-position, which might change the steric environment
around the chiral center, also produced the desired product
(3d) with a similar enantioselectivity.
Next, the use of benzyl alcohol derivatives was
investigated. Benzyl alcohol derivatives with methoxy,
methyl, fluoro, chloro, and bromo substituents at the para-
position of the benzene ring in 3 (3h-l) were available in this
reaction system. An aliphatic alcohol with a longer alkyl
chain, 2-phenylethanol, was transformed into 3m in good
yield but with a slightly lower enantioselectivity (74% ee).
The absolute stereoconfiguration of the propargylic
etherification product 3a was confirmed by comparison with
the separately prepared (R)-3a from commercially available
(R)-1-phenyl-2-propyn-1-ol. Treatment of the (R)-1-phenyl-
2-propyn-1-ol with sodium hydride and benzyl bromide
afforded (R)-3a without loss of the optical purity (Scheme
2). By comparison of the HPLC analyses, we confirmed the
(R)-isomer of 3a was the major product under the present
copper-pybox- and borinic acid-catalysis.
40 from [Cu
41 CuOTfꞏ1/2C
42 allenylidene ligand is a key step, although the alcohol is
2
(L1)
2
][OTf]
2
,9 which is generated in situ from
6
H
6
and 1 equiv of L1, from Si face of the
3
d
1
0
43 presumably activated by forming boronate complex in the
44 present reaction system (Scheme 3). Similar pathways have
6
45 been proposed by other research groups.
46
In summary, we have developed a copper- and borinic
47 acid-catalyzed reaction system that furnishes propargylic
48 etherification products with aliphatic alcohols as
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
49 nucleophiles
in
good
yields
with
excellent
50 enantioselectivities. We also revealed the monodentate
51 alcohols were effectively activated by the borinic acid
52 catalyst probably due to formation of the boronate complex
53 in a similar manner to diols and polyols. We believe that the
54 present findings may be further applicable in a variety of
55 reaction systems.
56
57
58 Supporting
Information
is
available
on
59 http://dx.doi.org/10.1246/cl.******.
6
0 References and Notes
61
1
a) Y. Miyake, S. Uemura, Y. Nishibayashi, ChemCatChem 2009,
1, 342. b) R. J. Detz, H. Hiemstra, J. H. van Maarseveen, Eur. J.
Org. Chem. 2009, 6263. c) C.-H. Ding, X.-L. Hou, Chem. Rev.
2011, 111, 1914. d) Y. Nishibayashi, Synthesis 2012, 44, 489. e)
D.-Y. Zhang, X.-P. Hu, Tetrahedron Lett. 2015, 56, 283. f) A. F.
Adeleke, A. P. N. Brown, L.-J. Cheng, K. A. M. Mosleh, C. J.
Cordier, Synthesis 2017, 49, 790. g) K. Sakata, Y. Nishibayashi,
Catal. Sci. Technol. 2018, 8, 12.
a) R. J. Detz, M. M. E. Delville, H. Hiemstra, J. H. van
Maarseveen, Angew. Chem., Int. Ed. 2008, 47, 3777. b) R. J.
Detz, Z. Abiri, R. le Griel, H. Hiemstra, J. H. van Maarseveen,
Chem.-Eur. J. 2011, 17, 5921.
a) G. Hattori, H. Matsuzawa, Y. Miyake, Y. Nishibayashi,
Angew. Chem., Int. Ed., 2008, 47, 3781. b) G. Hattori, K. Sakata,
H. Matsuzawa, Y. Tanabe, Y. Miyake, Y. Nishibayashi, J. Am.
Chem. Soc. 2010, 132, 10592. c) M. Shibata, K. Nakajima, Y.
Nishibayashi, Chem. Commun. 2014, 50, 7874. d) K. Nakajima,
M. Shibata, Y. Nishibayashi, J. Am. Chem. Soc. 2015, 137, 2472.
e) K. Tsuchida, Y. Senda, K. Nakajima, Y. Nishibayashi, Angew.
Chem., Int. Ed. 2016, 55, 9728.
We have studied Ru-catalyzed enantioselective propargylic
substitution reactions: a) M. Ikeda, Y. Miyake, Y. Nishibayashi,
Angew. Chem., Int. Ed. 2010, 49, 7289. b) M. Ikeda, Y. Miyake,
Y. Nishibayashi, Chem.-Eur. J. 2012, 18, 3321. c) Y. Senda, K.
Nakajima, Y. Nishibayashi, Angew. Chem., Int. Ed. 2015, 54,
4060.
Selected recent examples: a) L.-J. Cheng, C. J. Cordier, Angew.
Chem., Int. Ed. 2015, 54, 13734. b) Z.-T. Liu, Y.-H. Wang, F.-L.
Zhu, X.-P. Hu, Org. Lett. 2016, 18, 1190. c) X.-Y. Zhang, Z.-W.
Yang, Z. Chen, J. Wang, D.-L. Yang, Z. Shen, L.-L. Hu, J.-W.
Xie, J. Zhang, H.-L. Cui, J. Org. Chem. 2016, 81, 1778. d) Y.
Zhou, F.-L. Zhu, Z.-T. Liu, X.-M. Zhou, X.-P. Hu, Org. Lett.
2016, 18, 2734. e) L. Shao, Y.-H. Wang, D.-Y. Zhang, J. Xu, X.-
P. Hu, Angew. Chem., Int. Ed. 2016, 55, 5014. f) Q. Wang, T.-R.
Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc.
2016, 138, 8360. g) T.-R. Li, L.-Q. Lu, Y.-N. Wang, B.-C. Wang,
W.-J. Xiao, Org. Lett. 2017, 19, 4098. h) A. Shemet, E. M.
Carreira, Org. Lett. 2017, 19, 5229. i) L. Shao, X.-P. Hu, Chem.
Commun. 2017, 53, 8192. j) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M.
Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360. k)
H. Xu, L. Laraia, L. Schneider, K. Louven, C. Strohmann, A. P.
Antonchick, H. Waldmann, Angew. Chem., Int. Ed. 2017, 56,
11232. l) K. Zhang, L.-Q. Lu, S. Yao, J.-R. Chen, D.-Q. Shi, W.-
J. Xiao, J. Am. Chem. Soc. 2017, 139, 12847. m) J. E. Gómez, W.
6
6
6
6
6
6
6
6
7
2
3
4
5
6
7
8
9
0
2
3
2
6
71
7
7
7
7
7
2
3
4
5
6
2
2
7
8
Scheme 2. Preparation of propargylic ether 3a with
unambiguous stereoconfiguration.
2
9
77
7
7
8
8
8
8
8
8
8
8
8
8
9
9
9
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
4
5
3
3
0
1
Scheme 3. Plausible enantio-induction step.
93
9
9
9
9
4
5
6
7
3
3
3
3
3
3
3
3
2
3
4
5
6
7
8
9
The (R)-selective product formation by using (S)-
pybox ligands as the chiral source is same to the previous
propargylic etherification with aromatic alcohols and diols,
indicating a similar transition state on the enantio-induction
98
99
3
d,3e
100
step to the previous work.
At present, we consider the
1
1
1
01
02
03
present etherification proceeds via a similar pathway to our
previous work, where nucleophilic attack of an alcohol
toward a dimetallic copper-allenylidene complex derived 104