V. Santagada et al. / Tetrahedron Letters 42 (2001) 5171–5173
5173
using PyBOP/HOBt, while with HBTU/HOBt the
yields were lower (35–77% for 1 h reaction at rt and
55°C, respectively). The results were identical whether
Aib was in the C- or N-terminal position except for
compound 1 when HBTU/HOBt method was used
(both at rt or 55°C). Compounds 5 and 6 involved the
difficult coupling of two Aib residues. For the HBTU/
HOBt mediated coupling of Na-protected Aib-OH to
H-Aib-OMe (compounds 5 and 6) the coupling yields
varied significantly whether Z- or Boc-protecting
groups were used. These differences were not observed
when PyBOP/HOBt activation method was used.
Instead, coupling under microwave irradiation of solu-
tions gave, in any case, the desired dipeptides in higher
yields (86–96% in 40 min) and cleaner reactions than
those obtained by conventional heating or at rt. The
overall reaction times were dramatically reduced, from
16 h to 30 min. Moreover, the coupling yields were not
influenced by the particular activator employed
(PyBOP and HBTU), or there were no appreciable
differences in the coupling yields between the two cou-
pling reagents, or by the Na-protection (Z- or Boc) of
the incoming residue (compounds 5 and 6).
Temussi, P. A.; Selinger, Z.; Raider, F.; Chorev, M.
Biopolymers 1993, 33, 915–926.
12. De Filippis, V.; De Antoni, F.; Frigo, M.; de Laureto
Polverino, P.; Fontana, A. Biochemistry 1998, 37, 1686–
1696.
13. Ellman, J. A.; Mendel, D.; Schultz, P. G. Science 1992,
255, 197–200.
14. Leibfritz, D.; Haupt, E.; Dubischar, N.; Lachmann, H.;
Oekonomopoulos, R.; Jung, G. Tetrahedron 1982, 38,
2165–2181.
15. Balasubramanian, T. M.; Kendrick, N. C. E.; Taylor, M.;
Marshall, G. R.; Hall, J. E.; Vodyanov, I.; Reusser, F. J.
Am. Chem. Soc. 1981, 103, 6127–6132.
16. Mc Gahren, W. J.; Goodman, M. Tetrahedron 1967, 23,
2017–2030.
17. Leplawy, M. T.; Jones, D. S.; Kenner, G. W.; Sheppard,
R. C. Tetrahedron 1960, 11, 39–51.
18. Jones, D. S.; Kenner, G. W.; Preston, J.; Sheppard, R. C.
J. Chem. Soc. 1965, 6227.
19. Frerot, E.; Coste, J.; Pantaloni, A.; Dufour, M. N.;
Jouin, P. Tetrahedron 1991, 47, 259–270.
20. Varma, R. S. Green Chem. 1999, 43–55.
21. Santagada, V.; Perissutti, E.; Fiorino, F.; Vivenzio, B.;
Caliendo, G. Tetrahedron Lett. 2001, 42, 2397–2400.
22. Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.;
Jacquault, P.; Mathe, D. Synthesis 1998, 1213–1234.
23. Bose, A. K.; Banik, B. K.; Lavlinskaia, N.; Jayaraman,
M.; Manhas, M. S. Chemtech. 1997, 27, 18–24.
24. Galema, S. A. Chem. Soc. Rev. 1997, 26, 233–238.
25. Majetich, G.; Hicks, R. Radiat. Phys. Chem. 1995, 45,
567–579.
In conclusion, we have shown that the application of
microwave irradiation improves coupling yields and
significantly reduces reaction times in the solution syn-
thesis of Aib-containing dipeptides. Our findings will be
useful in the solution and possibly solid-phase peptide
synthesis, when the incorporation of Aib or other steri-
cally hindered amino acid residues into peptide chains
is required.
26. Caddick, S. Tetrahedron 1995, 51, 10403–10432.
27. Strauss, C. R.; Trainor, R. W. Aust. J. Chem. 1995, 48,
1665–1692.
References
28. Coupling Methods: PyBOP/HOBt and HBTU/HOBt
General procedure: To a DMF mixture of 1 mmol of
N-protected acid component (Z- or Boc-Xaa-OH), 1.1
mmol of coupling reagent (HBTU/HOBt or PyBOP/
HOBt), and 1.1 mmol of the C-protected amino acid
1. Nagaraj, R.; Balaram, P. Acc. Chem. Res. 1991, 14,
356–363 and references cited herein.
2. Karle, I. L.; Balaram, P. Biochemistry 1990, 29, 6747–
6756.
(H-Xaa-OCH3),
2
mmol of diisopropylethylamine
3. Toniolo, C.; Benedetti, E. Macromolecules 1991, 24,
4004–4009.
4. Pavone, V.; Benedetti, E.; Di Blasio, B.; Pedone, C.;
Santini, A.; Bavoso, A.; Toniolo, C.; Crisma, M. J. Mol.
Biol. 1990, 214, 633–635.
5. Toniolo, C.; Benedetti, E. Trends Biochem. Sci. 1991, 16,
350–353.
6. Burgess, A. W.; Leech, S. Biopolymers 1973, 12, 2599–
2605.
7. Paterson, Y.; Rumsey, S. M.; Benedetti, E.; Nemethy, G.;
Scheraga, H. A. J. Am. Chem. Soc. 1981, 103, 2947–2955.
8. Augsburger, J. D.; Bindra, V. A.; Scheraga, H. A.; Kuki,
A. Biochemistry 1995, 34, 2566–2576.
9. Cotton, R.; Giles, M. G.; Miller, L.; Shaw, J. S.; Timms,
D. Eur. J. Pharmacol. 1984, 97, 331–332.
10. Samanen, J.; Cash, T.; Narindray, D.; Brandeis, E.;
Adams, W.; Weideman, H.; Yellin, T. J. Med. Chem.
1991, 34, 3036–3043.
(DIPEA, 3 mmol if amine salt was present) was added.
The reaction was stirred at rt or by conventional heating
or by microwave irradiation according to than reported
in Table 1. The reaction mixture was separated from the
solvent, the crude residue was taken up in ethyl acetate
and washed successively three times with citric acid (5%),
sodium bicarbonate (5%), and a saturated solution of
sodium chloride. All dipeptides obtained were purified by
preparative RP-HPLC and the homogeneity of the
purified products was assessed by analytical RP-HPLC
with a Vydac C18-column (5 mm, 4.6×250 mm, spherical).
Analytical determinations were carried out by two sol-
vent systems: A: 10%, (v/v), acetonitrile in 0.1% TFA, B:
60% (v/v), acetonitrile in 0.1% TFA (linear gradient from
100 A to 100% B over 25 min, UV detection at 220 nm,
flow rate 1 mL/min). The final compounds were charac-
terized by mass spectrometry (LCQ Thermoquest-Ion
Trap) and the data were consistent with the considered
structures.
11. Tallon, M.; Ron, D.; Halle, D.; Amodeo, P.; Saviano, G.;
.