Page 5 of 10
Journal of the American Chemical Society
Soluble, Modular and Molecular Pores. Nat. Rev. Mater. 2016, 1,
Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal
Prismatic Linkers for Water Sorption. J. Am. Chem. Soc. 2019, 141,
2900.
(15) Li, P.; Li, P.; Ryder, M. R.; Liu, Z.; Stern, C. L.; Farha, O. K.;
Stoddart, J. F. Interpenetration Isomerism in Triptycene-Based
Hydrogen-Bonded Organic Frameworks. Angew. Chem. Int. Ed. 2019,
58, 1664.
(16) Zhou, H.-C. J.; Kitagawa, S. Metal–Organic Frameworks
(MOFs). Chem. Soc. Rev. 2014, 43, 5415.
(17) The percentage of the guest-accessible volume was calculated
using the PLATON program: Spek, A. L. Single-Crystal Structure
Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36,
7.
16053; (d) Adachi, T.; Ward, M. D. Versatile and Resilient Hydrogen-
Bonded Host Frameworks. Acc. Chem. Res. 2016, 49, 2669; (e) Tian,
J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T., Supramolecular Organic
Frameworks: Engineering Periodicity in Water Through Host–Guest
Chemistry. Chem. Commun. 2016, 52, 6351; (f) Tian, J.; Wang, H.;
Zhang, D.-W.; Liu, Y.; Li, Z.-T., Supramolecular Organic Frameworks
(SOFs): Homogeneous Regular 2D and 3D Pores in Water. Natl. Sci.
Rev. 2017, 4, 426; (g) Han, Y.-F.; Yuan, Y.-X.; Wang, H.-B. Porous
Hydrogen-Bonded Organic Frameworks. Molecules 2017, 22, 266; (h)
Luo, J.; Wang, J.-W.; Zhang, J.-H.; Lai, S.; Zhong, D.-C. Hydrogen-
Bonded Organic Frameworks: Design, Structures and Potential
Applications. CrystEngComm 2018, 20, 5884; (i) Lin, R.-B.; He, Y.; Li,
P.; Wang, H.; Zhou, W.; Chen, B. Multifunctional Porous Hydrogen-
Bonded Organic Framework Materials. Chem. Soc. Rev. 2019, 48,
1362; (j) Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Designing
Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) Ryder, M. R.; Donà, L.; Vitillo, J. G.; Civalleri, B.
Understanding and Controlling the Dielectric Response of Metal–
Organic Frameworks, ChemPlusChem, 2018, 83, 308.
Porosity.
10.1002/anie.201902147.
Angew.
Chem.
Int.
Ed.
Early
View,
doi:
(9) (a) Moulton, B.; Zaworotko, M. J., From Molecules to Crystal
Engineering: Supramolecular Isomerism and Polymorphism in
Network Solids. Chem. Rev. 2001, 101, 1629; (b) Baburin, I. A.; Blatov,
V. A.; Carlucci, L.; Ciani, G.; Proserpio, D. M. Interpenetrated Three-
Dimensional Networks of Hydrogen-Bonded Organic Species: A
Systematic Analysis of the Cambridge Structural Database. Cryst.
Growth & Des. 2008, 8, 519. Few examples of topologically complex
hydrogen-bonded frameworks: (c) Men, Y.-B.; Sun, J.; Huang, Z.-T.;
Zheng, Q.-Y. Rational Construction of 2D and 3D Borromean
Arrayed Organic Crystals by Hydrogen-Bond-Directed Self-
Assembly. Angew. Chem. Int. Ed. 2009, 48, 2873; (d) Men, Y.-B.; Sun,
J.; Huang, Z.-T.; Zheng, Q.-Y. Design and Construction of an Organic
Crystal with a Novel Interpenetrated n-Borromean Linked Topology.
Chem. Commun. 2010, 46, 6299; (e) Hisaki, I.; Toda, H.; Sato, H.;
Tohnai, N.; Sakurai, H. A Hydrogen-Bonded Hexagonal Buckybowl
Framework. Angew. Chem. Int. Ed. 2017, 56, 15294; (f) Lewandowska,
U.; Zajaczkowski, W.; Corra, S.; Tanabe, J.; Borrmann, R.; Benetti, E.
M.; Stappert, S.; Watanabe, K.; Ochs, N. A. K.; Schaeublin, R.; Li, C.;
Yashima, E.; Pisula, W.; Müllen, K.; Wennemers, H., A Triaxial
Supramolecular Weave. Nat. Chem. 2017, 9, 1068; (g) Yamagishi, H.;
Sato, H.; Hori, A.; Sato, Y.; Matsuda, R.; Kato, K.; Aida, T. Self-
Assembly of Lattices with High Structural Complexity from a
Geometrically Simple Molecule. Science 2018, 361, 1242.
(10) In network topology, “polyknotting” is equivalent to “self-
entangled” (“self-penetrating” and “self-catenating”), which is used
to describe single nets with “the peculiar feature of containing rings
through which pass other components of the same network”. See
Ref.5. In this report, “polyknot” refers specifically to the self-
entangled networks (PETHOF-3) that possess prime knot subunit
with a circuit smaller than a 10-membered ring. (The trefoil knot in
PETHOF-3 is a nine-membered ring. See Figure 2).
(11) (a) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied
Topological Analysis of Crystal Structures with the Program Package
ToposPro. Cryst. Growth & Des. 2014, 14, 3576; (b) Bonneau, C.;
O’Keeffe, M.; Proserpio, D. M.; Blatov, V. A.; Batten, S. R.; Bourne, S.
A.; Lah, M. S.; Eon, J.-G.; Hyde, S. T.; Wiggin, S. B.; Öhrström, L.
Deconstruction of Crystalline Networks into Underlying Nets:
Relevance for Terminology Guidelines and Crystallographic
Databases. Cryst. Growth & Des. 2018, 18, 3411.
(12) The network topology of PETHOF-3 has been analyzed
following a subnet tecton approach reported in: Hill, R. J.; Long, D.-
L.; Champness, N. R.; Hubberstey, P.; Schröder, M. New Approaches
to the Analysis of High Connectivity Materials: Design Frameworks
Based upon 44- and 63-Subnet Tectons. Acc. Chem. Res. 2005, 38,
335.
(13) Ke, X.-J.; Li, D.-S.; Miao, D. Design and Construction of Self-
Penetrating Coordination Frameworks. Inorg. Chem. Commun. 2011,
14, 788.
(14) (a) Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological
Analysis of Metal–Organic Frameworks with Polytopic Linkers
and/or Multiple Building Units and the Minimal Transitivity
Principle. Chem. Rev. 2014, 114, 1343; (b) Chen, Z.; Li, P.; Zhang, X.; Li,
P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K.
5
ACS Paragon Plus Environment