COMMUNICATIONS
[1] a) P. J. Stang, B. Olenyuk, Acc. Chem. Res. 1997, 30, 502 518;
b) Comprehensive Supramolecular Chemistry, Vols. 1 11 (Eds.: J.-M.
Lehn, J. L. Atwood, J. E. D. Davis, D. D. MacNicol, F. Vˆgtle)π
Pergamon, Oxford, UK, 1996; c) J.-M. Lehn, Supramolecular Chem-
istry: Concepts and Perspectives, VCH, Weinheim, 1995.
[8] W. L. Jˆrgensen, D. L. Severance, J. Am. Chem. Soc. 1990, 112, 4768
4774.
MeðSÞ
3þ
*
[9] Although the right-handed model structure of( P)-[Ag3L2
]
is
desirable for comparison with a left-handed X-ray crystal structure of
MeðSÞ
*
(M)-[Ag3L2
]
3þ, the right-handed structure was not available due
[2] a) O. D. Fox, M. G. B. Drew, P. D. Beer, Angew. Chem. 2000, 112, 139
144; Angew. Chem. Int. Ed. 2000, 39, 135 140; b) T. Kusukawa, M.
Fujita, Angew. Chem. 1998, 110, 3327 3329; Angew. Chem. Int. Ed.
1998, 37, 3142 3144; c) B. Olenyuk, J. A. Whiteford, A. Fechtenkot-
ter, P. J. Stang, Nature 1999, 398, 796 799; d) A. Ikeda, M. Yoshimura,
H. Udzu, C. Fukuhara, S. Shinkai, J. Am. Chem. Soc. 1999, 121, 4296
4297; e) P. Jacopozzi, E. Dalcanale, Angew. Chem. 1997, 109, 665 667;
Angew. Chem. Int. Ed. Engl. 1997, 36, 613 615; f) R. W. Saalfrank, H.
Glaser, B. Demleitner, F. Hampel, M. M. Chowdhry, V. Sch¸nemann,
A. X. Trautwein, G. B. M. Vaughan, R. Yeh, A. W. Davis, K. N.
Raymond, Chem. Eur. J. 2002, 8, 493 497.
[3] a) V. W.-W. Yam, E. C.-C. Cheng, Z.-Y. Zhou, Angew. Chem. 2000,
112, 1749 1751; Angew. Chem. Int. Ed. 2000, 39, 1683 1685; b) F. A.
Cotton, L. M. Daniels, C. Lin, C. A. Murillo, Inorg. Chem. Commun.
2001, 4, 130 133; c) G. A. van Albada, I. Mutikainen, U. Turpeinen, J.
Reedijk, Eur. J. Inorg. Chem. 1998, 547 549; d) G. Lowe, S. A. Ross,
M. Probert, A. Cowley, Chem. Commun. 2001, 1288 1289; e) F. J.
Winkler, R. Medina, J. Winkler, H. Krause, J. Mass Spectrom. 1997, 32,
1072 1079.
[4] Chiral capsules based on hydrogen bonds: a) J. M. Rivera, T. MartÌn, J.
Rebek, Jr.,Science 1998, 279, 1021 1023; b) L. J. Prins, J. Huskens, F.
de Jong, P. Timmerman, D. N. Reinhoudt, Nature 1999, 398, 498 502;
chiral capsules based on metal ligand interactions: c) S. Hiraoka, M.
Fujita, J. Am. Chem. Soc. 1999, 121, 10239 10240; d) A. J. Terpin, M.
Ziegler, D. W. Johnson, K. N. Raymond, Angew. Chem. 2001, 113,
161 164; Angew. Chem. Int. Ed. 2001, 40, 157 160; circular helicates
based on metal ligand interactions: e) C. Provent, S. Hewage, G.
Brand, G. Bernardinelli, L. J. Charbonniõre, A. F. Williams, Angew.
Chem. 1997, 109, 1346 1348; Angew. Chem. Int. Ed. Engl. 1997, 36,
1287 1289; f) C. Provent, E. Rivara-Minten, S. Hewage, G. Brunner,
A. F. Williams, Chem. Eur. J. 1999, 5, 3487 3494; g) O. Mamula, A.
von Zelewsky, G. Bernardinelli, Angew. Chem. 1998, 110, 302 305;
Angew. Chem. Int. Ed. 1998, 37, 290 293; h) G. Baum, E. C.
Constable, D. Fenske, C. E. Housecroft, T. Kulke, Chem. Commun.
1999, 195 196.
to the perturbed rotation along the C3 helical axis in (M)-
MeðSÞ
MeðRÞ
3þ
3þ
*
*
[Ag3L2
]
.
Instead,
a
model structure of( M)-[Ag3L2
]
MeðSÞ
*
energetically equivalent to (P)-[Ag3L2
]
3þ was obtained by simple
chirality inversion in the ligands from the solid structure of (M)-
MeðSÞ
*
[Ag3L2
]
3þ and compared with the solid structure; MacroModel 7.0
with modified MM2 force field. F. Mohamadi, N. G. J. Richards, W. C.
Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson,
W. C. Still, J. Comput. Chem. 1990, 11, 440.
[10] Crystal
structure
of(
M)-[Ag3L MeðSÞ(CH3CN)2(NO3)3]/(P)-
*
2
[Ag3L MeðRÞ(CH3CN)2(NO3)3]: C40H48Ag3N11O15, Mw ¼ 1246.50, color-
*
2
less crystal 0.45 î 0.38 î 0.20 mm3, monoclinic C2/c, a ¼ 24.408(3), b ¼
14.0353(17), c ¼ 14.1561(17) ä; a ¼ 90, b ¼ 96.760(2), g ¼ 908; V¼
4815.7(10) ä3, Z ¼ 4, 1calcd ¼ 1.719 MgmÀ3(including solvent), m(MoKa
,
l ¼ 0.71073 ä) ¼ 1.285 mmÀ1, 2qmax ¼ 56.568; 14328 measured reflec-
tions, ofwhich 5623 were unique. The structure was solved by direct
methods and refined by full-matrix least squares calculations with
SHELX-97. The final R1 ¼ 0.0468, wR2 ¼ 0.0963 (I > 2s(I)); R1 ¼
0.1016, wR2 ¼ 0.1154 (all data); measurements: Siemens SMART
CCD equipped with a graphite crystal incident-beam monochromator
Lp. CCDC-182211 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ,
UK; fax: (þ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
[11] m/z 1290.0
of[Ag
3L*Ph(S)L*Me(S)(NO3)2]þ
and
1308.0
of
[Ag3L*Ph(S)L*Me(S)(NO3)2(H2O)]þ.
Deracemization of a-Methylbenzylamine Using
an Enzyme Obtained by In Vitro Evolution**
[5] a) R. Kramer, J.-M. Lehn, A. Marquis-Rigault, Proc. Natl. Acad. Sci.
USA 1993, 90, 5394 5398; b) B. Hasenknopf, J.-M. Lehn, G. Baum, D.
Fenske, Proc. Natl. Acad. Sci. USA 1996, 93, 1397 1400; c) D.
Caulder, K. N. Raymond, Angew. Chem. 1997, 109, 1508 1510;
Angew. Chem. Int. Ed. Engl. 1997, 36, 1440 1442; d) M. Albrecht,
M. Schneider, H. Rˆttele, Angew. Chem. 1999, 111, 512 515; Angew.
Chem. Int. Ed. 1999, 38, 557 559; e) M. A. Masood, E. J. Enemark,
T. D. P. Stack, Angew. Chem. 1998, 110, 973 977; Angew. Chem. Int.
Ed. 1998, 37, 928 932; f) T. W. Kim, M. S. Lah, J.-I. Hong, Chem.
Commun. 2001, 743 744.
Marina Alexeeva, Alexis Enright,
Michael J. Dawson, Mahmoud Mahmoudian, and
Nicholas J. Turner*
Enantiomerically pure chiral amines are valuable synthetic
intermediates, particularly for the preparation of pharma-
ceutical compounds. Traditionally, chiral amines have been
obtained by resolution-based procedures, for example, by
[6] Ligands were prepared according to the previous report:
H.-J. Kim, Y.-H. Kim, J.-I. Hong, Tetrahedron Lett. 2001, 42, 5049
5052.
[1,2]
kinetic resolution ofa racemate using an enzyme
or
crystallization ofa diastereomer using a chiral acid to form a
salt.[3] Increasingly, there is a desire to develop asymmetric
approaches, or their equivalents, which can in principal
deliver the product in 100% yield and 100% ee. For example,
transaminases have been utilized for the conversion of
[7] [Ag3L MeðSÞ](NO3)3 in the solid state has to be described as being
*
2
composed ofa cationic of rm, [Ag 3L2 MeðSÞ(NO3)2(CH3CN)4]þ, and an
*
anionic form, [Ag3L2 MeðSÞ(NO3)4(CH3CN)2]À. Crystal structure of
*
MeðSÞ
(CH3CN)4(NO3)2]}{(M)-[Ag3L MeðSÞ(CH3CN)2(-
*
*
{(M)-[Ag3L2
2
(NO3)4]}: C42H51Ag3N12O15, Mw ¼ 1287.56, colorless crystal, 0.45 î
0.38 î 0.20 mm3, monoclinic C2, a ¼ 23.7463(13), b ¼ 14.1186(8), c ¼
15.3235(9) ä; a ¼ 90, b ¼ 97.503(1), g ¼ 908; V¼ 5093.4(5) ä3, Z ¼ 4,
[*] Prof. N. J. Turner, M. Alexeeva, A. Enright
Department ofChemistry
1calcd ¼ 1.679 MgmÀ3(including solvent), m(MoKa
,
l ¼ 0.71073 ä) ¼
1.219 mmÀ1, 2qmax ¼ 56.568; 15905 measured reflections, of which
11383 were unique. The structure was solved by direct methods and
refined by full-matrix least squares calculations with SHELX-97. The
final R1 ¼ 0.0245, wR2 ¼ 0.0557 (I > 2s(I)); R1 ¼ 0.0278, wR2 ¼ 0.0572
(all data); measurements: Siemens SMART CCD equipped with a
graphite crystal incident-beam monochromator Lp. CCDC-182210
contains the supplementary crystallographic data for this paper. These
retrieving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB21EZ, UK; fax: (þ 44)1223-336-033;
or deposit@ccdc.cam.ac.uk).
Centre for Protein Technology, The University of Edinburgh
King©s Buildings, West Mains Road, Edinburgh EH9 3JJ (UK)
Fax : (þ 44)131-650-4717
E-mail: n.j.turner@ed.ac.uk
Dr. M. J. Dawson, Dr. M. Mahmoudian
GlaxoSmithKline R&D, Medicines Research Centre
Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, (UK)
[**] We are grateful to the BBSRC and GlaxoSmithKline for funding a
postdoctoral fellowship (M.A.) and CASE award (A.E.). We also
thank the Wellcome Trust for financial support.
Angew. Chem. Int. Ed. 2002, 41, No. 17
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4117-3177 $ 20.00+.50/0
3177