10.1002/cmdc.202100032
ChemMedChem
FULL PAPER
2019-3: LigPrep, Schrödinger, LLC, New York, NY, 2019]. The obtained
files were used for docking simulations performed by Grid-based ligand
docking with energetics (GLIDE) [Schrödinger Release 2019-3: Glide,
Schrödinger, LLC, New York, NY, 2019]. During the docking process, full
flexibility was allowed for the ligands while the protein was held fixed.
The default Force Field OPLS_2005[29] and the standard precision (SP)
protocol were employed. A cubic having an edge of 12 Å for the inner
box and 32 Å for the outer box and centered on the residues K26, R83,
R267 and R281 were employed.
[7]
S. Nakagawa, L. Wei, W. M. Song, T. Higashi, S. Ghoshal, R.
S. Kim, C. B. Bian, S. Yamada, X. Sun, A. Venkatesh, N. Goossens,
G. Bain, G. Y. Lauwers, A. P. Koh, M. El-Abtah, N. B. Ahmad, H.
Hoshida, D. J. Erstad, G. Gunasekaran, Y. Lee, M. L. Yu, W. L.
Chuang, C. Y. Dai, M. Kobayashi, H. Kumada, T. Beppu, H. Baba, M.
Mahajan, V. D. Nair, M. Lanuti, A. Villanueva, A. Sangiovanni, M.
Iavarone, M. Colombo, J. M. Llovet, A. Subramanian, A. M. Tager, S.
L. Friedman, T. F. Baumert, M. E. Schwarz, R. T. Chung, K. K.
Tanabe, B. Zhang, B. C. Fuchs, Y. Hoshida, C. Precision Liver
Cancer Prevention, Cancer Cell 2016, 30(6), 879-890.
[8]
Giannelli, Hepatology 2011, 54(3), 920-930.
[9] A. Mazzocca, F. Dituri, F. De Santis, A. Filannino, C. Lopane,
R. C. Betz, Y. Y. Li, N. Mukaida, P. Winter, C. Tortorella, G. Giannelli,
C. Sabba, Cancer Res 2015, 75(3), 532-543.
[10] D. Gnocchi, S. Kapoor, P. Nitti, M. M. Cavalluzzi, G. Lentini, N.
Denora, C. Sabba, A. Mazzocca, J Mol Med (Berl) 2019.
[11] M. M. Cavalluzzi, G. F. Mangiatordi, O. Nicolotti, G. Lentini,
Expert Opin Drug Discov 2017, 12(11), 1087-1104.
[12] S. J. Pridmore, J. M. J. Williams, Tetrahedron Lett 2008,
49(52), 7413-7415.
[13] C. Bruno, A. Catalano, J. F. Desaphy, M. M. Cavalluzzi, A.
Carocci, A. Dipalma, C. Franchini, G. Lentini, D. C. Camerino, V.
Tortorella, Heterocycles 2007, 71(9), 2011-2026.
[14] S. Yang, W. Shi, D. Xing, Z. Zhao, F. Lv, L. Yang, Y. Yang, W.
Hu, Eur J Med Chem 2014, 86, 133-152.
[15] J. Huuskonen, D. J. Livingstone, D. T. Manallack, Sar and
Qsar in Environmental Research 2008, 19(3-4), 191-212.
[16] H. M. Rietveld, Phys Scripta 2014, 89(9).
[17] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi,
N. Corriero, A. Falcicchio, J Appl Crystallogr 2013, 46, 1231-1235.
[18] R. Rizzi, A. Altomare, Crystals 2020, 10(12).
[19] W. I. F. David, K. Shankland, Acta Crystallogr A 2008, 64, 52-
64.
MM-GBSA calculations. The binding free energies (∆Gbind) between
protein and ligands were computed by applying the Molecular
Mechanics/Generalized Born Surface Area (MM-GBSA)[30] calculations
on the obtained top-scored docking poses. More specifically, we
employed Prime software, available in the Schrodinger Suite 2019-3
[Schrödinger Release 2020-3: Prime, Schrödinger, LLC, New York, NY,
2020], applying the following Equation:
A. Mazzocca, F. Dituri, L. Lupo, M. Quaranta, S. Antonaci, G.
ΔGbind = ΔEMM + ΔGsolv + ΔGSA
where ΔEMM, ΔGsolv, and ΔGSA represent the difference between the
contribution made by the ligand-protein complex and the sum of those
made by the ligand and the protein taken alone, in terms of minimized
energy, solvation energy, and surface area energy, respectively.
Flexibility was allowed to all the residues having at least one atom within
a distance of 5 Å for the ligand.
Quantum mechanical calculations. Calculations were performed
according to procedures we previously developed.[31] Briefly, the models
of the undissociated compounds XAA, MC9, and MC6 were generated
from the atomic fragments incorporated into Spartan'16 (Wavefunction
Inc., Irvine, CA) inner fragment library and assuming the suggested
default starting geometries. The generated geometries were optimized by
the molecular mechanics MMFF routine offered by the software[32] and
then submitted to a systematic conformational distribution analysis using
the default step sizes. All conformers in a window of 10 Kcal/mol above
the global minimum conformer were retained. When two conformers
differed by dihedral values lower than 10°, the less stable conformer was
left out. Conformers were then classified according to their ab initio gas-
phase energy content calculated at the RHF/6-31G* level. All conformers
falling within a window of 5 kcal/mol above the global minimum were
retained and submitted to RHF/6-31G* geometry optimization. After
removal of redundant conformers (i.e., each conformer differing from a
more stable one by less than 5° in their corresponding dihedral values),
the so-obtained set of conformers underwent geometry optimization by
density functional theory (DFT) implemented in Spartan'16 with B3LYP
functional[33] and the 6-31G* basis setw[34] in the gas phase. The
optimized structures were confirmed as real minima by IR frequency
calculation (DFT B3LYP/6-31G*//DFT B3LYP/6-31G*). The above
geometry optimization was performed also on XAA, MC9, and MC6
carboxylate anions applying the conductor-like polarizable continuum
model (C-PCM; Spartan'16) to allow for aqueous solvating effect
consideration.[35],[36]
[20] R. Taniguchi, A. Inoue, M. Sayama, A. Uwamizu, K.
Yamashita, K. Hirata, M. Yoshida, Y. Tanaka, H. E. Kato, Y.
Nakada-Nakura, Y. Otani, T. Nishizawa, T. Doi, T. Ohwada, R.
Ishitani, J. Aoki, O. Nureki, Nature 2017, 548(7667), 356-360.
[21] S. R. Pillai, M. Damaghi, Y. Marunaka, E. P. Spugnini, S. Fais,
R. J. Gillies, Cancer Metastasis Rev 2019, 38(1-2), 205-222.
[22] R. J. Gillies, C. Pilot, Y. Marunaka, S. Fais, Biochim Biophys
Acta Rev Cancer 2019, 1871(2), 273-280.
[23] E. P. Spugnini, S. Fais, Expert Opin Ther Pat 2020, 30(1), 15-
25.
[24] D. Gnocchi, L. Del Coco, C. R. Girelli, F. Castellaneta, G.
Cesari, C. Sabba, F. P. Fanizzi, A. Mazzocca, Sci Rep 2021, 11(1),
1259.
[25] A. Altomare, G. Campi, C. Cuocci, L. Eriksson, C. Giacovazzo,
A. Moliterni, R. Rizzi, P. E. Werner, J Appl Crystallogr 2009, 42, 768-
775.
Acknowledgements
[26] A. Altomare, C. Cuocci, C. Giacovazzo, G. S. Kamel, A.
Moliterni, R. Rizzi, Acta Crystallogr A 2008, 64, 326-336.
[27] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, J
Appl Crystallogr 2012, 45, 789-797.
[28] A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, R. Rizzi,
Crystals 2020, 10(1).
We are grateful to Ms. Loredana Angela Acquaro and Dr. Filippo
Capodiferro for their technical support.
[29] J. L. Banks, H. S. Beard, Y. X. Cao, A. E. Cho, W. Damm, R.
Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy,
D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A.
Friesner, E. Gallicchio, R. M. Levy, J Comput Chem 2005, 26(16),
1752-1780.
Keywords: drug design • enantioselectivity • hepatocellular
carcinoma • lysophosphatidic acid receptor 6 antagonists •
therapeutic tools
[30] S. Genheden, U. Ryde, Expert Opin Drug Dis 2015, 10(5),
449-461.
[31] A. Carocci, M. Roselli, R. Budriesi, M. Micucci, J. F. Desaphy,
C. Altamura, M. M. Cavalluzzi, M. Toma, G. I. Passeri, G. Milani, A.
Lovece, A. Catalano, C. Bruno, A. De Palma, F. Corbo, C. Franchini,
S. Habtemariam, G. Lentini, Chemmedchem 2021, 16(3), 578-588.
[32] T. A. Halgren, J Comput Chem 1996, 17(5-6), 520-552.
[33] A. D. Becke, Phys Rev A 1988, 38(6), 3098-3100.
[34] E. R. Davidson, D. Feller, Chem Rev 1986, 86(4), 681-696.
[35] A. W. Lange, J. M. Herbert, J Chem Phys 2010, 133(24).
[36] A. W. Lange, J. M. Herbert, Chem Phys Lett 2011, 509(1-3),
77-87.
[1]
C. R. de Lope, S. Tremosini, A. Forner, M. Reig, J. Bruix, J
Hepatol 2012, 56 Suppl 1, S75-87.
[2]
[3]
[4]
[5]
A. Forner, M. Reig, J. Bruix, Lancet 2018.
M. Kudo, Cancers (Basel) 2018, 10(11).
O. Waidmann, Expert Opin Biol Ther 2018, 18(8), 905-910.
Z. Wu, L. Lai, M. Li, L. Zhang, W. Zhang, Medicine (Baltimore)
2017, 96(51), e9431.
[6]
Harokopos, P. Foka, A. Dimitriadis, K. Evangelou, A. N. Moulas, U.
Georgopoulou, V. G. Gorgoulis, G. N. Dalekos, V. Aidinis,
Hepatology 2017, 65(4), 1369-1383.
E. Kaffe, A. Katsifa, N. Xylourgidis, I. Ninou, M. Zannikou, V.
7
This article is protected by copyright. All rights reserved.