Journal of the American Chemical Society
ARTICLE
30 °C, and terminated by the addition of cold TCA to 5% (w/v) or by
ultrafiltration using a Microcon YM-3. HPLC analysis of the reaction
was similar to that described for LipO.
’ ACKNOWLEDGMENT
This work is supported by the National Institutes of Health
Grant AI087849 and the Kentucky Science and Education
Foundation (S.V.L.).
The effect of pH on LipP activity was carried out in 50 mM indicated
buffer, 2.5 mM potassium phosphate, 2.5 mM 3, and 1 μM LipP for
5 min at 30 °C. The reactions were terminated with 0.1 M sodium
hydroxide, and 4 formation was determined by UV/vis spectroscopy
with Δε290 nm = 5700 Mꢀ1 at pH 13.26 To determine the kinetic
constants with respect to co-substrate phosphate, reactions were carried
out in 50 mM Tris-HCl pH 9.0 consisting of 1.5 mM 3, variable
phosphate (2.5ꢀ2500 μM), and 100 nM LipP at 30 °C under initial
velocity conditions (<10% product formation). To determine the kinetic
constants with respect to the co-substrate nucleoside, reactions were
carried out in 50 mM Tris-HCl pH 9.0 consisting of saturating phosphate
(1.5 mM) and variable nucleoside (10ꢀ4700 μM 3, 10ꢀ10 000 μM 20-
deoxy-3, 8ꢀ800 μM 2, 20ꢀ10 000 μM thymidine, or 30ꢀ3000 μM 1),
and 100 nM LipP at 30 °C under initial velocity conditions. Product
formation when utilizing thymidine was determined by UV/vis spec-
’ REFERENCES
(1) Thibodeaux, C. J.; Melancon, C. E., III; Liu, H.-w. Angew. Chem.,
Int. Ed. 2008, 47, 9814–9859.
(2) Blanchard, S.; Thorson, J. S. Curr. Opin. Chem. Biol. 2006, 10,
263–271.
(3) Kudo, F.; Fujii, T.; Kinoshita, S.; Eguchi, T. Med. Chem. 2007,
15, 4360–4368.
(4) Mikuꢀsovꢁa, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.;
D’Haeze, W.; Scherman, M. S.; Brennan, P. J.; McNeil, M. R.; Crick,
D. C. J. Bacteriol. 2005, 187, 8020–8025.
(5) Jensen, K. F. Metabolism of Nucleotides, Nucleosides and Nucleo-
bases in Microorganisms; Academic: London, U.K., 1983; pp 1ꢀ25.
(6) Winn, M.; Goss, R. J. M.; Kimura, K.; Bugg, T. D. H. Nat. Prod.
Rep. 2010, 27, 279–304.
(7) Funabashi, M.; Baba, S.; Nonaka, K.; Hosobuchi, M.; Fujita, Y.;
Shibata, T.; Van Lanen, S. G. ChemBioChem 2010, 11, 184–190.
(8) Igarashi, M.; Takahashi, Y.; Shitara, T.; Nakamura, H.; Naganawa,
H.; Miyake, T.; Akamatsu, Y. J. Antibiot. 2005, 58, 327–337.
(9) Ochi, K.; Ezaki, M.; Iwani, M.; Komori, T.; Kohsaka, M. Eur.
Patent 333177 A2, 1989.
(10) McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Lenoy, E.;
Lotvin, J.; Petersen, P. J.; Siegel, M. M.; Singh, G.; Williamson, R. T.
J. Am. Chem. Soc. 2002, 124, 10260–10261.
(11) Hirano, S.; Ichikwawa, S.; Matsuda, A. Bioorg. Med. Chem. 2008,
16, 5123–5133.
(12) Dini, C.; Didier-Laurent, S.; Drochon, N.; Feteanu, S; Guillot,
J. C.; Monti, F.; Uridat, E.; Zhang, J.; Aszodi, J. Bioorg. Med. Chem. Lett.
2002, 12, 1209–2121.
(13) Kaysser, L.; Lutsch, L.; Siebenberg, S.; Wemakor, E.; Kammerer,
B.; Gust, B. J. Biol. Chem. 2009, 284, 14987–14996.
(14) Cheng, L.; Chen, W.; Zhai, L.; Xu, D.; Huang, T.; Lin, S.; Zhou,
X.; Deng, Z. Mol. BioSyst. 2011, 7, 920–927.
troscopy with Δε
= 3700 Mꢀ1 at pH 13.26 Single substrate
300 nm
kinetics at pH 7.5 was carried out using identical conditions except with
increased LipP (730 nM). Kinetic analysis with EcUdp was carried out
with final enzyme concentrations of 100 nM at pH 9.0 and 200 nM
at pH 7.5.
In Vitro Characterization of LipM. Reactions consisted of 50 mM
potassium phosphate, pH 7.5, 5 mM MgCl2, 2 mM 3 or analogue, 5 mM
nucleotide triphosphate, 5 μM LipP, and 1 μM LipM at 30 °C, and the
reaction terminated by the addition of cold TCA to 5% (w/v) or by
ultrafiltration using a Microcon YM-3. The activity of LipM was tested with
sugar-1-phosphates generated in situ from synthetic 3, 20-deoxy-3, 2, or 7
and the co-substrate nucleotide UTP, dUTP, TTP, rCTP, dCTP, dGTP,
rGTP, dATP, or rATP. The activity of LipM was also tested with
commercial glucose-1-phosphate or glucosamine-1-phosphate with co-
substrate UTP. Following centrifugation to remove protein, the reaction
components were analyzed by HPLC using a C-18 reverse-phase
analytical column. A series of linear gradients was developed from
40 mM phosphoric acid-triethylamine pH 6.5 (C) to 20% methanol
(D) in the following manner (beginning time and ending time with
linear increase to % D): 0ꢀ8 min, 100% D; 8ꢀ18 min, 60% D; 18ꢀ
25 min, 95% D; 25ꢀ32 min, 95% D; and 32ꢀ35 min, 0% D. The flow
rate was kept constant at 1.0 mL/min, and elution was monitored at
260 nm. LCꢀMS was performed as above.
(15) Kaysser, L.; Siebenberg, S.; Kammerer, B.; Gust, B. ChemBio-
Chem. 2010, 11, 191–196.
(16) Yang, Z.; Chi, X.; Funabashi, M.; Baba, S.; Nonaka, K.; Pahari,
P.; Unrine, J.; Jacobsen, J. M.; Elliott, G. I.; Rohr, J.; Van Lanen, S. G.
J. Biol. Chem. 2011, 286, 7885–7892.
(17) Toney, M. D. PLP-dependent enzymes, chemistry of. In Wiley
Encyclopedia of Chemical Biology; Begley, T, Ed; John Wiley & Sons, Inc.:
Hoboken, NJ, 2009; Vol, 3, pp 731ꢀ735.
In Vitro Characterization of LipN. Reactions consisted of
50 mM potassium phosphate, pH 7.5, 2 mM 2, 2.8 μM LipP at 30 °C
for 2 h. LipP was removed by ultrafiltration, and 86 μL of the filtrate was
added to a solution of 5 mM MgCl2, 2 mM UTP, 1 mM 4, 12 μM LipM,
and 7 μM LipN (final volume of 100 mL) and incubated at 30 °C for the
indicated time points. HPLC analysis was performed using a TFA
mobile phase as described above.
(18) Schneider, G.; Kack, H.; Lindquvist, Y. Structure 2000, 8,
R1–R6.
(19) Rackham, E. J.; Gr€uschow, S.; Ragab, A. E.; Dickens, S.; Goss,
R. J. M. ChemBioChem 2010, 11, 1700–1709.
(20) Zhang, W.; Ostash, B.; Walsh, C. T. Proc. Natl. Acad. Sci. U.S.A.
2010, 107, 16828–16833.
(21) Zhang, W.; Ntai, I.; Bolla, M. L.; Malcolmson, S. J.; Kahne, D.;
Kelleher, N. L.; Walsh, C. T. J. Am. Chem. Soc. 2011, 133, 5240–5243.
(22) Tozzi, M. G.; Camici, M.; Mascia, L.; Sgarrella, F.; Ipata, P. L.
FEBS J. 2006, 273, 1089–1101.
(23) Temmink, O. H.; de Bruin, M.; Turksma, A. W.; Cricca, S.;
Laan, A. C.; Peters, G. J. Int. J. Biochem. Cell Biol. 2007, 39, 565–575.
(24) el Kouni, M. H.; el Kouni, M. M.; Naguib, F. N. Cancer Res.
1993, 53, 3687–3693.
’ ASSOCIATED CONTENT
S
Supporting Information. Instrumentation, chemicals,
b
synthetic procedures and spectroscopic analysis, OPA-modifica-
tion procedure, large-scale preparation of enzyme products for
spectroscopic analysis, NMR analyses, Table S1, and additional
figures. This material is available free of charge via the Internet at
(25) Razzell, W. E.; Khorana, H. G. Biochim. Biophys. Acta 1958,
28, 562–566.
(26) Leer, J. C.; Hammer-Jespersen, K.; Schwartz, M. Eur. J. Biochem.
1977, 75, 217–224.
’ AUTHOR INFORMATION
(27) Krenitsky, T. A. Biochim. Biophys. Acta 1976, 429, 352–358.
(28) Vita, A.; Huang, C. Y.; Magni, G. Arch. Biochem. Biophys. 1983,
226, 687–692.
Corresponding Author
14458
dx.doi.org/10.1021/ja206304k |J. Am. Chem. Soc. 2011, 133, 14452–14459