2 (a) C. J. Pedersen, Angew. Chem., Int. Ed. Engl., 1988, 27, 1021;
(b) J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89;
(c) D. J. Cram, Angew. Chem., Int. Ed. Engl., 1988, 27, 1009.
3 D. P. Perl, D. C. Gajdusek, R. M. Garruto, R. T. Yanagihara and
C. J. Gibbs, Science, 1982, 217, 1053.
4 D. P. Perl and A. R. Brody, Science, 1980, 208, 297.
5 R. W. Gensemer and R. C. Playle, Crit. Rev. Environ. Sci. Technol.,
1999, 29, 315.
6 (a) M. Arduini, F. Felluga, F. Mancin, P. Rossi, P. Tecilla,
U. Tonellato and N. Valentinuzzi, Chem. Commun., 2003, 1606;
(b) A. B. Othman, J. W. Lee, Y. D. Huh, R. Abidi, J. S. Kim and
J. Vicens, Tetrahedron, 2007, 63, 10793; (c) Y.-W. Wang,
M.-X. Yu, Y.-H. Yu, Z.-P. Bai, Z. Shen, F.-Y. Li and
X.-Z. You, Tetrahedron Lett., 2009, 50, 6169; (d) S. H. Kim,
H. S. Choi, J. Kim, S. J. Lee, D. T. Quang and J. S. Kim, Org.
Lett., 2010, 12, 560; (e) T.-H Ma, M. Dong, Y.-M. Dong,
Y.-W. Wang and Y. Peng, Chem.–Eur. J., 2010, 16, 10313;
(f) D. Maity and T. Govindaraju, Chem. Commun., 2010,
46, 4499; (g) D. Maity and T. Govindaraju, Inorg. Chem., 2010,
49, 7229.
Fig. 4 The optimized geometries of 1 (left) and 1ÁAl3+ (right). The
methyl groups on the calix[4]arene unit and hydrogen atoms except
those on the amide and phenolic groups are omitted for clarity.
7 (a) H. Schmidbaur, Chem. Soc. Rev., 1995, 24, 391;
(b) H. Schmidbaur and A. Schier, Chem. Soc. Rev., 2008,
calix[4]arene framework with a circular intramolecular hydrogen-
bond arrangement (Fig. 4). In the cone structure, the two
alkynyl Au(I) isocyanide units are far apart. Upon complexation
of the Al3+ ion to 1, reorganization of the lower rim of the
calix[4]arene framework took place, bringing the two gold
centres into close proximity with a short AuÁ Á ÁAu contact of
3.062 A, supporting the presence of the AuÁ Á ÁAu interactions
in the Al3+ ion-bound adduct. As depicted in Fig. 4, the
aluminum(III) ion has a distorted trigonal-prismatic coordination
geometry with the two ether, two phenolic and two carbonyl
oxygen atoms from the two amide subunits coordinated to it.
The average Al–O(ether), Al–O(phenolic) and Al–O(carbonyl)
bond distances are 2.058, 1.943 and 1.891 A, respectively. This
37, 1931; (c) P. Pyykko, Chem. Rev., 1997, 97, 597; (d) R. J.
¨
Puddephatt, Coord. Chem. Rev., 2001, 216, 313; (e) C.-M. Che and
S.-W. Lai, Coord. Chem. Rev., 2005, 249, 1296; (f) V. W.-W.
Yam and E. C.-C. Cheng, Angew. Chem., Int. Ed., 2000,
39, 4240; (g) V. W.-W. Yam and E. C.-C. Cheng, Chem. Soc.
Rev., 2008, 37, 1806.
8 (a) V. W.-W. Yam and S. W.-K. Choi, J. Chem. Soc., Dalton
Trans., 1996, 4227; (b) V. W.-W. Yam, S. W.-K. Choi and
K.-K. Cheung, Organometallics, 1996, 15, 1734; (c) V. W.-W.
Yam, C.-K. Li and C.-L. Chan, Angew. Chem., Int. Ed., 1998,
37, 2857; (d) V. W.-W. Yam, E. C.-C. Cheng and K.-K. Cheung,
Angew. Chem., Int. Ed., 1999, 38, 197; (e) V. W.-W. Yam, E. C.-C.
Cheng and Z.-Y. Zhou, Angew. Chem., Int. Ed., 2000, 39, 1683;
(f) V. W.-W. Yam, E. C.-C. Cheng and N. Zhou, Angew. Chem.,
Int. Ed., 2001, 40, 1763; (g) C.-K. Li, X.-X. Lu, K. M.-C. Wong,
C.-L. Chan, N. Zhu and V. W.-W. Yam, Inorg. Chem., 2004,
43, 7421; (h) S.-K. Yip, E. C.-C. Cheng, L.-H. Yuan, N. Zhu and
V. W.-W. Yam, Angew. Chem., Int. Ed., 2004, 43, 4954; (i) X. He,
N. Zhu and V. W.-W. Yam, Organometallics, 2009, 28, 3621;
(j) X. He, E. C.-C. Cheng, N. Zhu and V. W.-W. Yam, Chem.
Commun., 2009, 4016; (k) T. K.-M. Lee, N. Zhu and V. W.-W.
Yam, J. Am. Chem. Soc., 2010, 132, 17646.
9 (a) C. King, J.-C. Wang, M. N. I. Khan and J. P. Fackler, Jr.,
Inorg. Chem., 1989, 28, 2145; (b) M. A. Rawashdeh-Omary,
M. A. Omary, J. P. Fackler, Jr., R. Galassi, B. R. Pietroni and
A. Burini, J. Am. Chem. Soc., 2001, 123, 9689; (c) W. E. van Zyl,
J. M. Lopez-de-Luzuriaga, A. A. Mohamed, R. J. Staples and
J. P. Fackler, Jr., Inorg. Chem., 2002, 41, 4579; (d) D. M. P.
Mingos, J. Chem. Soc., Dalton Trans., 1976, 1163; (e) Y. A. Lee
and R. Eisenberg, J. Am. Chem. Soc., 2003, 125, 7778; (f) J. C.
Vickery, M. M. Olmstead, E. Y. Fung and A. L. Balch, Angew.
Chem., Int. Ed. Engl., 1997, 36, 1179.
10 (a) D. Li, X. Hong, C.-M. Che, W. C. Lo and S. M. Peng, J. Chem.
Soc., Dalton Trans., 1993, 2929; (b) C.-M. Che, H.-Y. Chao,
V. M. Miskowski, Y. Li and K.-K. Cheung, J. Am. Chem. Soc.,
2001, 123, 4985; (c) G. Jia, R. J. Puddephatt, J. D. Scott and
J. J. Vittal, Organometallics, 1993, 12, 3565; (d) C. P. McArdle,
S. Van, M. C. Jennings and R. J. Puddephatt, J. Am. Chem. Soc.,
2002, 124, 3959.
11 E. M. Gussenhoven, J. C. Fettinger, D. M. Pham, M. M. Malwitz
and A. L. Balch, J. Am. Chem. Soc., 2005, 127, 10838.
12 (a) R. Bayon, S. Coco and P. Espinet, Chem.–Eur. J., 2005,
11, 1079; (b) J. Arias, M. Bardaji and P. Espinet, Inorg. Chem.,
2008, 47, 3559.
1
binding mode has further been supported by H NMR spectro-
scopy of 1 in the presence of Al3+ in d6-acetone. A downfield
shift of the amide proton and neighbouring proton resonances
was observed as a result of the electron-withdrawing effect of the
cation-binding. Nevertheless, a slight upfield shift of the hydroxy
proton resonances was found. It may be due to the removal
of the intramolecular hydrogen bonding interactions between
the ether oxygen and the OH groups upon Al3+ ion binding
(Fig. S4 in ESIw).
In conclusion, a novel calix[4]arene alkynylgold(I) isocyanide
complex has been designed and synthesized, and demonstrated
to show selective binding towards Al3+. The unique mode of
signal transduction by the switching on of AuÁ Á ÁAu interactions
to give a visual luminescence change from green to orange-red
color has been demonstrated.
V.W.-W.Y. acknowledges support from the University Grants
Committee Areas of Excellence Scheme (AoE/P-03/08) and
the Research Grants Council of Hong Kong Special Adminis-
trative Region, China (HKU 7060/09P). F.K.-W.H acknowledges
the receipt of a Postgraduate Studentship administered by The
University of Hong Kong. We also thank the Computer Centre at
the University of Hong Kong for providing the computational
resources.
13 R. L. White-Morris, M. M. Olmstead and A. L. Balch, J. Am.
Chem. Soc., 2003, 125, 1033.
14 (a) G. Jia, N. C. Payne, J. J. Vittal and R. J. Puddephatt, Organo-
metallics, 1993, 12, 4771; (b) M. J. Irwin, G. Jia, N. C. Payne and
R. J. Puddephatt, Organometallics, 1996, 15, 51.
15 X. He, W. H. Lam, N. Zhu and V. W.-W. Yam, Chem.–Eur. J.,
2009, 15, 8842.
Notes and references
1 (a) A. W. Czarnik, in Fluorescent Chemosensors for Ion and
Molecule Recognition, American Chemical Society, Washington, DC,
1993; (b) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice,
Chem. Rev., 1997, 97, 1515.
16 H. H. Jaffe and M. Orchin, in Theory and Application of
UltraViolet Spectroscopy, Wiley, New York, 1962.
c
8780 Chem. Commun., 2011, 47, 8778–8780
This journal is The Royal Society of Chemistry 2011