898
Y.L. Zhou et al. / Chinese Chemical Letters 23 (2012) 895–898
radical complex with dissolved oxygen in aqueous phase, then generated ionic pair with cationic PTCs, after that, it
was transferred into the organic phase, therein, PINO was generated via hydrogen abstraction by hyperoxide radical
complex, and then, PINO was involved in the oxidation circulation, similar to that of homogeneous oxidation process
[2].
3. Conclusions
In summary, an easy workup and environmentally friendly method to convert ethylbenzene into the corresponding
oxides, promoted by PTCs, was developed in a water involved liquid–liquid biphasic system, among which, TBAB
was the most favorable PTC, due to its appropriate aliphatic chain length and capability of forming ionic pair with
CoSPc, contrary to that, anionic and nonionic PTCs exhibited less helpfulness to the oxidation.
Acknowledgments
We thank the Fundamental Research Funds for the Central Universities (No. 10CX04024A) and the financial
support from Natural Science Foundation of Shandong Province (No. 2009ZRA05107).
References
[1] (a) R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic, New York, 1981;
(b) C.L. Hill, Activation and Functionalization of Alkanes, Academic, New York, 1989;
(c) R.A. Sheldon, ChemTech 21 (1991) 566;
(d) L. Simandi, Catalytic Activation of Dioxygen by Metal Complexes, Kluwer Academic, Boston, 1992;
(e) J. March, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, New York, 1992, p. 705;
(f) D.H.R. Barton, A.E. Martell, D.T. Sawyer (Eds.), The Activation of Dioxygen and Homogeneous Catalytic Oxidation, Plenum, New York,
1993;
(g) J. Haber, J.R. Kosak, T.A. Johnson (Eds.), Catalysis of Organic Reaction, Marcel Dekker, Inc., New York, 1993, p. 151;
(h) R.A. Sheldon, ChemTech 24 (1994) 38.
[2] (a) Y. Ishii, S. Sakaguchi, Catal. Today 117 (2006) 105;
(b) R.A. Sheldon, I.W.C.E. Arends, J. Mol. Catal. A: Chem. 251 (2006) 200;
(c) Y. Xu, S.L. Zhang, W.H. Duan, Chin. Chem. Lett. 18 (2007) 807.
[3] (a) Y. Yoshino, Y. Hayashi, T. Iwahama, et al. J. Org. Chem. 62 (1997) 6810;
(b) A. Shibamoto, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 43 (2002) 8859;
(c) Y. Ishii, T. Iwahama, S. Sakaguchi, et al. J. Org. Chem. 61 (1996) 4520;
(d) Y. Ishii, S. Kato, T. Iwahama, et al. Tetrahedron Lett. 37 (1996) 4993;
(e) F. Minisci, F. Recupero, G.F. Pedulli, et al. J. Mol. Catal. A: Chem. 204–205 (2003) 63;
(f) F. Minisci, C. Punta, F. Recupero, J. Mol. Catal. A: Chem. 251 (2006) 129.
[4] F. Rajabi, B. Karimi, J. Mol. Catal. A: Chem. 232 (2005) 95.
[5] (a) A. Ebadi, N. Safari, M.H. Peyrovi, Appl. Catal. A: Gen. 321 (2007) 135;
(b) A.B. Sorokin, A. Tuel, Catal. Today 57 (2000) 45;
(c) A.B. Sorokin, F. Quignard, R. Valentin, et al. Appl. Catal. A: Gen. 309 (2006) 162;
(d) G. Lu, Y. Zhou, Y. Xiang, et al. J. Porphyr. Phthalocyanines 14 (2010) 904.
[6] (a) A.B. Sorokin, A. Tuel, Catal. Today 57 (2000) 45;
(b) A. Ebadia, N. Safarin, M.H. Peyrovi, Appl. Catal. A: Gen. 321 (2007) 135.
[7] 2: 1H NMR (400 MHz, CDCl3): d 7.95 (d, 2H, J = 7.6 Hz), 7.55 (t, 1H, J = 7.4 Hz), 7.45 (t, 2H, J = 7.6 Hz), 2.59 (s, 3H); EI-MS (70 eV) m/z
(%): 120 (M+, 1), 119 (2), 105 (25), 85 (64), 83 (100), 77 (17), 47 (27). 3: 1H NMR (400 MHz, CDCl3): d 7.32–7.22 (m, 5H), 4.81 (q, 1H,
J = 6.4 Hz), 2.46 (s, 1H), 1.44 (d, 3H, J = 6.4 Hz); EI-MS (70 eV) m/z (%): 122 (M+, 17), 107 (71), 105 (100), 79 (37), 77 (21), 51 (11).
[8] (a) C.M. Starks, J. Am. Chem. Soc. 93 (1971) 195;
(b) C.M. Starks, R.M. Owens, J. Am. Chem. Soc. 95 (1973) 3613;
(c) K. Urata, N.J. Takaishi, Surfact. Deterg. 4 (2001) 191.
[9] G. Para, E. Jarek, P. Warszynski, Colloid Surf. A 261 (2005) 65.
[10] J. Szejtli, Chem. Rev. 98 (1998) 1743.
[11] D.P. Shi, H.B. Ji, Chin. Chem. Lett. 20 (2009) 139.