10.1002/cctc.201901703
ChemCatChem
FULL PAPER
T. Montini, C. Petit, E. Stathatose, R. Godin, J. R. Durrant, M.
Prato, P. Fornasiero, Nano Energy 2018, 50, 468-478; c) E. M.
Dias, K. C. Christoforidis, L. Francas, C. Petit, ACS Appl.
Energy Mater. 2018, 1, 6524-6534; d) X. Wang, K. Maeda, A.
Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M.
Antonietti, Nat. Mater. 2009, 8, 76-80; e) W. J. Ong, L. L. Tan,
Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116,
7159-7329.
a) J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti,
X. Fu, X. Wang, Energy Environ. Sci. 2011, 4, 675-678; b) Y.
Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem., Int. Ed.
Engl. 2015, 54, 12868-12884; c) S. Yang, Y. Gong, J. Zhang,
L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv.
Mater. 2013, 25, 2452-2456.
a) Z. Zhao, Y. Sun, F. Dong, Nanoscale 2015, 7, 15-37; b) P.
Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater. 2012,
22, 4763-4770; c) X. Zhang, X. Xie, H. Wang, J. Zhang, B.
Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 18-21; d) K. C.
Christoforidis, T. Montini, E. Bontempi, S. Zafeiratos, J. J. D.
Jaén, P. Fornasiero, Appl. Catal., B 2016, 187, 171-180.
a) X.-H. Li, M. Antonietti, Chemical Society Reviews 2013, 42,
6593-6604; b) Y.-Y. Cai, X.-H. Li, Y.-N. Zhang, X. Wei, K.-X.
Wang, J.-S. Chen, Angew. Chem., Int. Ed. 2013, 52, 11822-
11825; c) S. A. Ansari, M. H. Cho, Sustainable Energy Fuels
2017, 1, 510-519; d) L. Wu, Q. Li, C. Yang, X. Ma, Z. Zhang, X.
Cui, J. Mater. Chem. A 2018, 6, 20947-20955 ; e) Z. Xu, C.
Zhuang, Z. Zou, J. Wang, X. Xu, T. Peng, Nano Res. 2017, 10,
2193-2209.
Microscopy (TEM) using a Field Emission Gun JEOL2010 instrument
equipped operated at 200kV. This instrument has a spatial resolution at
Scherzer defocus conditions of 0.19 nm. Scanning Electron Microscopy
(SEM) images were recorded on a Field Emission Gun FEI Nova 450
electron microscope with an accelerating voltage of 5 kV. Energy
dispersive X-ray spectra (EDS) were obtained in the same microscope
using 20 kV.
[8]
Photocatalytic activity evaluation
The photocatalytic activity in H2 production of all catalysts was evaluated
using a solar simulator (LOT-Oriel) equipped with a 150 W Xe lamp and
an Atmospheric Edge Filter. A power density of approximately 25 and
180 mW cm−2 is achieved in the UV (300-400 nm) and in the visible
region (400-1000 nm), respectively. All reactions were contacted at flow
conditions (15 ml min-1 argon flow) over a period of 24 h[32]. The catalyst
(60 mg) was suspended into 80 ml of an aqueous ethanol solution (50
v.%) and Pt (0.1 wt.%) was photodeposited as co-catalyst by adding
Pt(NO3)2. Temperature was maintained at 25 oC by means of a cryostat
during the reaction. The reaction mixture was purged with argon (15 ml
min-1) for 40 min under steering to remove air prior to irradiation. An
Agilent 7890 gas chromatographer equipped with a Carboxen 1010
PLOT (Supelco, 30 m × 0.53 mm ID, 30 μm film) column using Ar as
carrier followed by a Thermal Conductivity Detector (TCD) and DB-
225ms column (J&W, 60 m × 0.32 mm ID, 20 μm film) using He as
carrier followed by a mass spectrometer (MS) HP 5975C was used to
detect the evolved gaseous products on-line.
[9]
[10]
[11]
[12]
S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang,
Energy Environ. Sci. 2015, 8, 731-759.
a) Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chemical
Engineering Journal 2015, 260, 117-125; b) A. Crake, K. C.
Christoforidis, R. Godin, B. Moss, A. Kafizas, S. Zafeiratos, J.
R.Durrant, C. Petit, Appl. Catal., B 2019, 242, 369-378; c) B.
Chai, T. Peng, J. Mao, K. Li, L. Zan, Phys. Chem. Chem. Phys.
2012, 14, 16745-16752; d) X. Fan, T. Wang, B. Gao, H. Gong,
H. Xue, H. Guo, L. Song, W. Xia, X. Huang, J. He, Langmuir
2016, 32, 13322-13332.
K. C. Christoforidis, M. Fernandez-Garcia, Catal. Sci. Technol.
2016, 6, 1094-1105.
X. Lan, L. Wang, B. Zhang, B. Tian, J. Zhang, Catal. Today
2014, 224, 163-170.
M. Fittipaldi, V. Gombac, A. Gasparotto, C. Deiana, G. Adami,
D. Barreca, T. Montini, G. Martra, D. Gatteschi, P. Fornasiero,
ChemPhysChem 2011, 12, 2221-2224.
M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, J. Karczewski,
J. Ryl, Electrochem. Comm. 2015, 60, 212-215.
K. C. Christoforidis, M. Melchionna, T. Montini, D. Papoulis, E.
Stathatos, S. Zafeiratos, E. Kordouli, P. Fornasiero, RSC Adv.
2016, 6, 86617-86626.
A. Crake, K. C. Christoforidis, R. Godin, B. Moss, A. Kafizas,
S. Zafeiratos, J. R. Durrant, C. Petit, Appl. Catal., B 2019, 242,
369-378.
M. Quesada-González, N. D. Boscher, C. J. Carmalt, I. P.
Parkin, ACS Appl. Mater. Interfaces 2016, 8, 25024-25029.
M. Bettinelli, V. Dallacasa, D. Falcomer, P. Fornasiero, V.
Gombac, T. Montini, L. Romano, A. Speghini, J. Hazard.
Mater. 2007, 146, 529-534.
a) X. Zhou, B. Jin, L. Li, F. Peng, H. Wang, H. Yu, Y. Fang, J.
Mater. Chem. 2012, 22, 17900-17905; b) X. Zhou, F. Peng, H.
Wang, H. Yu, Y. Fang, Chem. Commun. 2011, 47, 10323-
10325.
M. L. Guo, X. D. Zhang, C. T. Liang, Physica B 2011, 406,
3354-3358.
L. Mascaretti, V. Russo, G. Zoppellaro, A. Lucotti, C. S. Casari,
S. Kment, A. Naldoni, A. L. Bassi, J. Phys. Chem. C 2019, 123,
11292-11303.
Acknowledgements
Financial support from the French National Research Agency
(ANR) under the Program “Make Our Planet Great Again” (ANR-
18-MOPGA-0014) is fully acknowledged. T.M. acknowledges
financial support from MIUR PRIN2017 project 2017PBXPN4.
[13]
[14]
[15]
Keywords: boron, carbon nitride, hydrogen, photocatalysis,
[16]
[17]
photoreforming, TiO2.
[1]
a) K. C. Christoforidis, P. Fornasiero, ChemCatChem 2017, 9,
1523-1544; b) M. G. Walter, E. L. Warren, J. R. McKone, S. W.
Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010,
110, 6446-6473; c) K. C. Christoforidis, P. Fornasiero,
ChemCatChem 2019, 11, 368-382; d) X. Chen, S. Shen, L.
Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503-6570.
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev.
2014, 114, 9987-10043.
a) K. C. Christoforidis, A. Iglesias-Juez, S. J. A. Figuero, M. D.
Michiel, M. A. Newton, M. Fernandez-Garcia, Catal. Sci.
Technol. 2013, 3, 626-634; b) L. Chen, X. Zhou, B. Jin, J. Luo,
X. Xu, L.Zhang, Y. Hong, Int. J. Hydrogen Energy 2016, 41,
7292-7300.
[18]
[19]
[20]
[2]
[3]
[21]
[4]
[5]
P. Carmichael, D. Hazafy, D. S. Bhachu, A. Mills, J. A. Darr, I.
P. Parkin, Phys. Chem. Chem. Phys. 2013, 15, 16788-16794.
a) V. Gombac, L. D. Rogatis, A. Gasparotto, G. Vicario, T.
Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello,
M. Graziania, Chem. Phys. 2007, 339, 111-123; b) S. In, A.
Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M. S. Tikhov,
D. S. Wright, R. M. Lambert, J. Am. Chem. Soc. 2007, 129,
13790-13791; c) M. Fittipaldi, V. Gombac, T. Montini, P.
Fornasiero, M. Graziani, Inorg. Chim. Acta 2008, 361, 3980-
3987.
[22]
[23]
[24]
a) T. Berger, M. Sterrer, O. Diwald, E. Knozinger,
ChemPhysChem 2005, 6, 2104-2112; b) T. Berger, M. Sterrer,
O. Diwald, E. Knozinger, D. Panayotov, T. L. Thompson, J. J.
T. Yates, J. Phys. Chem. B 2005, 109, 6061-6068; c) T.
Berger, M. Sterrer, S. Stankic, J. Bernardi, O. Diwald, E.
Knözinger, Mat. Sci. Eng. C Mater 2005, 25, 664-668; d) M.
Fittipaldi, D. Gatteschi, P. Fornasiero, Catal. Today 2013, 206,
2-11.
[6]
[7]
N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, J. Phys. Chem.
C 2011, 111, 11836-11842.
a) J. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 2015, 8,
3092-3108; b) K. C. Christoforidis, Z. Syrgiannis, V. L. Parola,
This article is protected by copyright. All rights reserved.