This work was financially supported by the ‘‘973 Project’’
(2010CB631303), NSFC (20833009, 20903095, 20873148,
U0734005, 51071081, 51071146, 51101145 and 51102230),
LNSFC (No. 20102224), Liaoning BaiQianWan Talents
Program (No. 2010921050), Liaoning Education Committee
(L2010223) and IUPAC (Project No. 2008-006-3-100). The
authors would like to thank Dr Zheling Zhang and Jeffrey Yang
(Quantachrome Instruments, USA) for helpful discussions.
Notes and references
1 (a) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim,
M. O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127–1129;
(b) M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and
J. R. Long, J. Am. Chem. Soc., 2006, 128, 16876–16883;
(c) M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks,
P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung and
´
G. Ferey, Angew. Chem., Int. Ed., 2006, 45, 8227–8231.
2 J. B. Lin, W. Xue, J. P. Zhang and X. M. Chen, Chem. Commun.,
2011, 47, 926–928.
3 L. X. Shi and C. D. Wu, Chem. Commun., 2011, 47, 2928–2930.
4 A. Carne, C. Carbonell, I. Imaz and D. Maspoch, Chem. Soc. Rev.,
2011, 40, 291–305.
5 G. Z. Yuan, C. F. Zhu, Y. Liu and Y. Cui, Chem. Commun., 2011,
47, 3180–3182.
Fig. 5 (a) Gases sorption isotherms on NMOF at 273 K and (b) heat
of adsorption isotherms at different CO2 and CH4 loadings. In the
isotherms, solid and open markers represent adsorption and
desorption points respectively.
at 273 K and 777 mm Hg, which is higher compared to the
corresponding values of some representative MOFs and
ZIFs.12 The specific surface area of NMOF calculated by
CO2 adsorption data is 767 m2 gꢁ1, which are in agreement
with the value of NMOF based on the N2 adsorption. We also
calculated the isosteric heat of adsorption (Qst) for CO2 using
adsorption data collected at 273 and 298 K by the Clausius–
Clapeyron equation. Qst for CO2 is B23 kJ molꢁ1 in the
adsorption region from 5 cm3 gꢁ1 to 35 cm3 gꢁ1 (Fig. 5b).
The CH4 uptake capacity of NMOF is 19 cm3 gꢁ1 at 273 K
and 777 mm Hg. Qst for CH4 is B18 kJ molꢁ1, which is much
lower than that for CO2. We attributed the significant difference
in the adsorbed amounts and the heats of adsorption for CO2
and CH4 to the fact that CO2 has a quadrupole moment,
whereas CH4 is nonpolar, so the stronger affinity of CO2 for
the material adsorption sites, as compared to CH4.
6 (a) W. J. Rieter, K. M. L. Taylor, H. Y. An, W. L. Lin and
W. B. Lin, J. Am. Chem. Soc., 2006, 128, 9024–9025;
(b) A. M. Spokoyny, D. Kim, A. Sumrein and C. A. Mirkin,
Chem. Soc. Rev., 2009, 38, 1218–1227; (c) W. B. Lin, W. J. Rieter
and K. M. L. Taylor, Angew. Chem., Int. Ed., 2009, 48, 650–658.
7 S. H. Jhung, J. H. Lee, J. W. Yoon, C. Serre, G. Fe
J. S. Chang, Adv. Mater., 2007, 19, 121–124.
´
rey and
8 D. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa,
S. Kitagawa and J. Groll, Nat. Chem., 2010, 2, 410–416.
9 A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen,
M. Takata, Y. Kubota and S. Kitagawa, J. Am. Chem. Soc., 2008,
130, 13664–13672.
10 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou,
R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl.
Chem., 1985, 57, 603–619.
Comparatively, the N2 and O2 uptakes at 273 K and 777 mm
Hg were only 4.5 cm3 gꢁ1 and 5.2 cm3 gꢁ1, respectively. The
initial slopes of CO2, CH4, N2 and O2 adsorption isotherms
were calculated, and the ratios of these slopes were used to
estimate the adsorption selectivity for CO2 over CH4, N2 or
O2.13 From these data (Fig. S6, ESIw), the calculated CO2/CH4
selectivity was 4.4 : 1, CO2/N2 selectivity was 19.6 : 1 and
CO2/O2 selectivity was 18.8 : 1 at 273 K.
11 (a) Y. M. Jeon, G. S. Armatas, J. Heo, M. G. Kanatzidis and
C. A. Mirkin, Adv. Mater., 2008, 20, 2105–2110; (b) Z. F. Xin,
J. F. Bai, Y. M. Shen and Y. Pan, Cryst. Growth Des., 2010, 10,
2451–2454; (c) O. K. Farha, A. M. Spokoyny, K. L. Mulfort,
S. Galli, J. T. Hupp and C. A. Mirkin, Small, 2009, 5, 1727–1731;
(d) W. Cho, H. J. Lee and M. Oh, J. Am. Chem. Soc., 2008, 130,
16943–16946; (e) Y. M. Jeon, G. S. Armatas, D. Kim,
M. G. Kanatzidis and C. A. Mirkin, Small, 2009, 5, 46–50.
12 (a) H. Furukawa, J. Kim, N. W. Ockwig, M. O’Keeffe and
O. M. Yaghi, J. Am. Chem. Soc., 2008, 130, 11650–11661;
(b) R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa,
M. O’Keeffe and O. M. Yaghi, Science, 2008, 319, 939–943;
(c) E. Neofotistou, C. D. Malliakas and P. N. Trikalitis, Chem.–Eur.
J., 2009, 15, 4523–4527; (d) A. Phan, C. J. Doonan, F. J. Uribe-
Romo, C. B. Knobler, M. O’Keeffe and O. M. Yaghi, Acc. Chem.
Res., 2010, 43, 58–67.
In summary, here we reported for the first time a synthesis
procedure yielding pure uniformly nanosized Al(OH)(NDC)
(NMOF) crystallites with high thermal stability. NMOF can
adsorb 12.7 mg gꢁ1 and 21.9 mg gꢁ1 hydrogen at 77 K under
about 1 atm and 30 atm, respectively. Moreover, the kinetics
experiment indicates that nanocrystalline NMOF adsorbs H2 up
to B98% saturation within about 100 s at 77 K. It shows high
CO2 sorption capacity and excellent selectivity for CO2 over N2
and O2. It is concluded that NMOF is a promising candidate for
H2 storage, for CO2 capture, and for gas separation.
13 (a) J. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010, 132,
38–39; (b) R. Banerjee, H. Furukawa, D. Britt, C. Knobler,
M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
3875–3877.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 759–761 761