Communication
ChemComm
and E. Leclerc, Adv. Synth. Catal., 2016, 358, 526; (h) W. Cao, D. Tan,
R. Lee and C.-H. Tan, J. Am. Chem. Soc., 2018, 140, 1952.
4 (a) J. R. Schmink and S. W. Krska, J. Am. Chem. Soc., 2011, 133, 19574;
(b) P. Becker, D. L. Priebbenow, H.-J. Zhang, R. Pirwerdjan and
C. Bolm, J. Org. Chem., 2014, 79, 814; (c) Y. Obora, Y. Ogawa, Y. Imai,
T. Kawamura and Y. Tsuji, J. Am. Chem. Soc., 2001, 123, 10489;
(d) M. Yamane, T. Amemiya and K. Narasaka, Chem. Lett., 2001, 1210;
(e) S. D. Ramgren and N. K. Garg, Org. Lett., 2014, 16, 824.
5 (a) C. Tan, W. Chen, X. Mu, Q. Chen, J. Gong, T. Luo and Z. Yang, Org.
Scheme 4 Plausible mechanism.
´
˜
Lett., 2015, 17, 2338; (b) J. Labarre-Laine, I. Perinan, V. Desvergnes and
Y. Landais, Chem. – Eur. J., 2014, 20, 9336; (c) A. Guy, C. Oger,
J. Heppekausen, C. Signorini, C. De Felice, A. Fu¨rstner, T. Durand and
J.-M. Galano, Chem. – Eur. J., 2014, 20, 6374.
by the loss of HOAc.9,16 Then, alkene insertion into the resulting
Ru–C bond takes place to form intermediate II. Next, b-hydride
elimination of II furnishes the desired product 3. Finally, catalytically
active species was regenerated by reoxidation by Cu(II) salt.
In conclusion, we have developed an inexpensive ruthenium-
catalyzed oxidative C–H alkenylation reaction between aroylsilanes
and alkenes. With the assistance of the directing group acylsilane,
this protocol provides a mild and straightforward method for the
preparation of valuable vinyl arenes with excellent regio- and
stereoselectivities. The operationally simple reaction is applicable
to a broad range of aroylsilane substrates and displays wide
functional group tolerance, demonstrating the practicality of this
C–H alkenylation protocol.
We gratefully acknowledge the National Natural Science
Foundation of China (NSFC) (21502037 and 21672048), the Natural
Science Foundation of Zhejiang Province (ZJNSF) (LY19B020006 and
LY18E030005), the Social Development Program of Hangzhou
Science and Technology Bureau (20180533B01), the Open Founda-
tion of MOE Key Laboratory of Macromolecular Synthesis and
Functionalization (2018MSF), the Open Foundation of Collaborative
Innovation Centre for Manufacture of Fluorine and Silicone Fine
Chemicals and Materials (FSi2018A026), and the Pandeng Plan
Foundation of Hangzhou Normal University for Youth Scholars of
Materials, Chemistry and Chemical Engineering for financial sup-
port. G. Z. acknowledges a Qianjiang Scholar award from Zhejiang
Province, China.
6 (a) B. S. Lane and K. Burgess, Chem. Rev., 2003, 103, 2457; (b) Q. H. Xia,
H. Q. Ge, C. P. Ye, Z. M. Liu and K. X. Su, Chem. Rev., 2005, 105, 1603;
(c) A. B. Dounay and L. E. Overman, Chem. Rev., 2003, 103, 2945;
(d) M. Shibasaki, E. M. Vogl and T. Ohshima, Adv. Synth. Catal., 2004,
346, 1533.
7 (a) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem.,
2009, 121, 5196 (Angew. Chem., Int. Ed., 2009, 48, 5094); (b) T. Satoh
and M. Miura, Chem. – Eur. J., 2010, 16, 11212; (c) F. W. Patureau,
J. Wencel-Delord and F. Glorius, Aldrichimica Acta, 2012, 45, 31;
(d) G. Song, F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651.
8 For selected reviews on directed C–H functionalizations, see: (a) R.-Y. Zhu,
M. E. Farmer, Y.-Q. Chen and J.-Q. Yu, Angew. Chem., Int. Ed., 2016,
55, 10578; (b) P. Gandeepan and C.-H. Cheng, Chem. – Asian J., 2016,
11, 448; (c) Z. Huang, H. N. Lim, F. Mo, M. C. Young and G. Dong,
Chem. Soc. Rev., 2015, 44, 7764; (d) P. Gandeepan and C.-H. Cheng,
Chem. – Asian J., 2015, 10, 824; (e) O. Daugulis, J. Roane and L. D. Tran,
Acc. Chem. Res., 2015, 48, 1053; ( f ) Z. Chen, B. Wang, J. Zhang, W. Yu,
Z. Liu and Y. Zhang, Org. Chem. Front., 2015, 2, 1107; (g) Q.-Z. Zheng and
N. Jiao, Tetrahedron Lett., 2014, 55, 1121; (h) V. S. Thirunavukkarasu,
S. I. Kozhushkov and L. Ackermann, Chem. Commun., 2014, 50, 29;
´
(i) A. Ros, R. Fernandez and J. M. Lassaletta, Chem. Soc. Rev., 2014,
43, 3229; ( j) F. Kakiuchi, T. Kochi and S. Murai, Synlett, 2014, 2390;
(k) S. De Sarkar, W. Liu, S. I. Kozhushkov and L. Ackermann, Adv. Synth.
Catal., 2014, 356, 1461.
9 (a) W. Ma, P. Gandeepan, J. Li and L. Ackermann, Org. Chem. Front.,
2017, 4, 1435; (b) L. Ackermann, Chem. Rev., 2011, 111, 1315;
(c) L. Ackermann, R. Vicente and A. R. Kapdi, Angew. Chem., Int.
Ed., 2009, 48, 9792.
10 (a) M. T. Mihai, G. R. Genov and R. J. Phipps, Chem. Soc. Rev., 2018,
47, 149; (b) M. Bera, S. Agasti, R. Chowdhury, R. Mondal, D. Pal and
D. Maiti, Angew. Chem., Int. Ed., 2017, 56, 5272; (c) D. Leow, G. Li,
T.-S. Mei and J.-Q. Yu, Nature, 2012, 486, 518.
11 (a) A. Dey, S. Maity and D. Maiti, Chem. Commun., 2016, 52, 12398;
(b) S. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta, A. Dey,
R. Kancherla, A. Maji, A. Hazra, M. Bera and D. Maiti, J. Am. Chem.
Soc., 2015, 137, 11888; (c) T. Patra, S. Bag, R. Kancherla, A. Mondal,
A. Dey, S. Pimparkar, S. Agasti, A. Modak and D. Maiti, Angew.
Chem., Int. Ed., 2016, 55, 7751.
Conflicts of interest
12 (a) F. Zhang and D. R. Spring, Chem. Soc. Rev., 2014, 43, 6906;
(b) G. Rousseau and B. Breit, Angew. Chem., Int. Ed., 2011, 50, 2450.
13 (a) S. Song, P. Lu, H. Liu, S.-H. Cai, C. Feng and T.-P. Loh, Org. Lett., 2017,
19, 2869; (b) P. Lu, C. Feng and T.-P. Loh, Org. Lett., 2015, 17, 3210.
14 (a) P. Becker, R. Pirwerdjan and C. Bolm, Angew. Chem., Int. Ed.,
2015, 54, 15493; (b) P. Becker, D. L. Priebbenow, R. Pirwerdjan and
C. Bolm, Angew. Chem., Int. Ed., 2014, 53, 269.
There are no conflicts to declare.
Notes and references
1 (a) A. G. Brook, M. A. Quigley, G. J. D. Peddle, N. V. Schwartz and
C. M. Warner, J. Am. Chem. Soc., 1960, 82, 5102; (b) D. F. Harnish
and R. West, Inorg. Chem., 1963, 2, 1082; (c) J. Yoshida, S. Matsunaga 15 (a) F. Li, C. Yu, J. Zhang and G. Zhong, Org. Lett., 2016, 18, 4582; (b) C. Yu,
and S. Isoe, Tetrahedron Lett., 1989, 30, 5293; (d) J. Yoshida, M. Itoh,
S. Matsunaga and S. Isoe, J. Org. Chem., 1992, 57, 4877.
2 (a) A. G. Brook, Acc. Chem. Res., 1974, 7, 77; (b) W. H. Moser,
F. Li, J. Zhang and G. Zhong, Chem. Commun., 2017, 53, 533; (c) F. Li,
C. Shen, J. Zhang, L. Wu, X. Zhuo, L. Ding and G. Zhong, Adv. Synth.
Catal., 2016, 358, 3932; (d) F. Li, C. Yu, J. Zhang and G. Zhong, Org.
Biomol. Chem., 2017, 15, 1236; (e) C. Yu, J. Zhang and G. Zhong, Chem.
Commun., 2017, 53, 9902; ( f ) T. Li, J. Zhang, C. Yu, X. Lu, L. Xu and
G. Zhong, Chem. Commun., 2017, 53, 12926.
´
´
Tetrahedron, 2001, 57, 2065; (c) J. Gonzalez, J. Santamarıa and
A. Ballesteros, Angew. Chem., Int. Ed., 2015, 54, 13678.
3 (a) A. E. Mattson, A. R. Bharadwaj and K. A. Scheidt, J. Am. Chem. Soc.,
2004, 126, 2314; (b) Z. Shen and V. M. Dong, Angew. Chem., Int. Ed., 2009, 16 (a) L. Ackermann, Top. Organomet. Chem., 2007, 24, 35; (b) I. Omae,
48, 784; (c) K. Ito, H. Tamashima, N. Iwasawa and H. Kusama, J. Am. Coord. Chem. Rev., 2004, 248, 995.
Chem. Soc., 2011, 133, 3716; (d) M.-Y. Han, F.-Y. Yang, D. Zhou and Z. Xu, 17 Unfortunately, other interesting olefins such as methyl but-2-enoate,
Org. Biomol. Chem., 2017, 15, 1418; (e) Y. Matsuya, K. Wada, D. Minato
and K. Sugimoto, Angew. Chem., Int. Ed., 2016, 55, 10079; ( f ) C.-Y. Lin,
P.-J. Ma, Z. Sun, C.-D. Lu and Y.-J. Xu, Chem. Commun., 2016, 52, 912;
acrylonitrile, nitroethene, N,N-dimethylacrylamide and 1-octene
were inert to react, and benzoylsilane suffered from decomposition
at elevated temperatures.
(g) M. Decostanzi, J. Godemert, S. Oudeyer, V. Levacher, J.-M. Campagne 18 E. M. Simmons and J. F. Hartwig, Angew. Chem., Int. Ed., 2012, 51, 3066.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 826--829 | 829