Beilstein J. Org. Chem. 2017, 13, 644–647.
7. Karjalainen, O. K.; Koskinen, A. M. P. Org. Biomol. Chem. 2011, 9,
ded ready access to tetrahydrofuran 24 in good yield [21].
Finally, treatment of endoperoxide 23 with Co(salen) gave
ready access to the two lactol isomers 29,30 in quantitative
yield (≈1:1 ratio of isomers) [10,22,23]. Lactol isomers 29,30
could potentially serve as precursors for the formation of substi-
tuted piperidines via reductive amination or be oxidised to yield
lactones or lactam derivatives.
8. Compain, P.; Chagnault, V.; Martin, O. R. Tetrahedron: Asymmetry
9. Avery, T. D.; Greatrex, B. W.; Sejer Pedersen, D.; Taylor, D. K.;
Tiekink, E. R. T. J. Org. Chem. 2006, 73, 2633–2640.
10.Pedersen, D. S.; Robinson, T. V.; Taylor, D. K.; Tiekink, E. R. T.
11.Robinson, T. V.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2006, 71,
Conclusion
Herein, we report the development of a synthetic strategy using
[4 + 2]-cycloaddition reactions to yield endoperoxides 18–23
that contain a protected primary amine. Such intermediates
serve as useful new building blocks for organic synthesis. Pre-
liminary exploration of the chemistry of these compounds was
encouraging and gave access to a variety of novel protected
azasugar precursors. We conclude that the choice of amine and
dihydroxy protecting groups can have an impact on the success
of the endoperoxide synthesis and its thermal stability, and that
employing phthalimide and acetonide groups for N- and
O-protection, respectively, allow for a range of chemical trans-
formations to be carried out. We are in the process of optimis-
ing and exploring the chemistry of these building blocks and the
results will be reported in due course.
12.Robinson, T. V.; Pedersen, D. S.; Taylor, D. K.; Tiekink, E. R. T.
13.James, T.; Simpson, I.; Grant, J. A.; Sridharan, V.; Nelson, A. Org. Lett.
14.Pedersen, D. S.; Taylor, D. K.; Tiekink, E. R. T.
Acta Crystallogr., Sect. E 2007, 63, o4301.
15.Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89,
16.Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994,
17.Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.
18.Delfourne, E.; Kiss, R.; Le Corre, L.; Dujols, F.; Bastide, J.;
Collignon, F.; Lesur, B.; Frydman, A.; Darro, F. J. Med. Chem. 2003,
19.Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M.
Bioorg. Med. Chem. 2004, 12, 5147–5160.
Supporting Information
20.Erkkilä, A.; Pihko, P. M. J. Org. Chem. 2006, 71, 2538–2541.
Supporting Information File 1
21.Greatrex, B. W.; Taylor, D. K. J. Org. Chem. 2004, 69, 2577–2579.
Experimental procedures for all compounds; 1H and
13C NMR spectra for novel compounds 13, 16, 18–28.
22.Avery, T. D.; Haselgrove, T. D.; Taylor, D. K.; Tiekink, E. R. T.;
Avery, T. D.; Rathbone, T. J. Chem. Commun. 1998, 333–334.
23.Avery, T. D.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2000, 65,
Acknowledgements
The Lundbeck Foundation – Natural Sciences is gratefully ac-
License and Terms
knowledged for financial support.
This is an Open Access article under the terms of the
Creative Commons Attribution License
References
1. Winchester, B. G. Tetrahedron: Asymmetry 2009, 20, 645–651.
permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
2. Horne, G. In Carbohydrates as Drugs; Seeberger, P. H.;
Rademacher, C., Eds.; Springer International Publishing: Cham, 2014;
pp 23–51.
3. Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R.
Drug Discovery Today 2011, 16, 107–118.
The license is subject to the Beilstein Journal of Organic
Chemistry terms and conditions:
4. Tamayo, J. A.; Franco, F.; Lo Re, D. Synlett 2010, 1323–1326.
The definitive version of this article is the electronic one
which can be found at:
5. Petakamsetty, R.; Jain, V. K.; Majhi, P. K.; Ramapanicker, R.
6. Marjanovic, J.; Ferjancic, Z.; Saicic, R. N. Tetrahedron 2015, 71,
647