Z. Li et al. / Dyes and Pigments 94 (2012) 60e65
65
[23] Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, et al. A highly selective
fluorescent chemosensor for Pb2þ. J Am Chem Soc 2005;127:10107e11.
[24] Zapata F, Caballero A, Espinosa A, Tàrraga A, Molina P. Triple channel sensing
of Pb(II) ions by a simple multiresponsive ferrocene receptor having a 1-
deazapurine backbone. Org Lett 2008;10:41e4.
[40] Kumar M, Kumar R, Bhalla V. Optical chemosensor for Ag(þ), Fe(3þ), and
cysteine: information processing at molecular level. Org Lett 2011;13:366e9.
[41] Sun K, Fu H, Hong S. A Fe3þ/Hg2þ-selective anthracene-based fluorescent PET
sensor with tridentate ionophore of amide/b-amino alcohol. J Fluoresc 2007;
17:383e9.
[25] Xiang Y, Tong A, Lu Y. Abasic site-containing DNAzyme and aptamer for label-
free fluorescent detection of Pb(2þ) and adenosine with high sensitivity,
selectivity, and tunable dynamic range. J Am Chem Soc 2009;131:15352e7.
[26] Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric
ion. Chem Rev 2008;108:3443e80.
[27] Lee MH, Lee SW, Kim SH, Kang C, Kim JS. Nanomolar Hg(II) detection using
Nile blue chemodosimeter in biological media. Org Lett 2009;11:2101e4.
[28] Du J, Fan J, Peng X, Sun P, Wang J, Li H, et al. A new fluorescent chemo-
dosimeter for Hg(2þ): selectivity, sensitivity, and resistance to cys and GSH.
Org Lett 2010;12:476e9.
[29] Zhou Y, Zhu CY, Gao XS, You XY, Yao C. Hg(2þ)-selective ratiometric and
“OffeOn” chemosensor based on the azadieneepyrene derivative. Org Lett
2010;12:2566e9.
[30] Suresh M, Mandal AK, Saha S, Suresh E, Mandoli A, Di Liddo R, et al. Azine-
based receptor for recognition of Hg(2þ) ion: crystallographic evidence and
imaging application in live cells. Org Lett 2010;12:5406e9.
[31] Zhang M, Gao YH, Li MY, Yu MX, Li FY, Li L, et al. A selective turn-on fluo-
rescent sensor for FeIII and application to bioimaging. Tetrahedron Lett 2007;
48:3709e12.
[32] Mao J, Wang L, Dou W, Tang X, Yan Y, Liu W. Tuning the selectivity of two
chemosensors to Fe(III) and Cr(III). Org Lett 2007;9:4567e70.
[33] Lim NC, Pavlova SV, Brückner C. Squaramide hydroxamate-based chem-
idosimeter responding to iron(III) with a fluorescence intensity increase. Inorg
Chem 2009;48:1173e82.
[42] Aisen P, Wessling-Resnick M, Leibold EA. Iron metabolism. Curr Opin Chem
Biol 1999;3:200e6.
[43] Matzanke BF, Muller-Matzanke G, Raymond KN. Iron carriers and iron
proteins, vol. 5. New York: VCH Publishers; 1989.
[44] Lauffer RB, editor. Iron and human disease. Boca Raton, FL: CRC Press; 1992.
[45] Xia ZY, Su JH, Fan HH, Cheah KW, Tian H, Che CH. Multifunctional
diarylamine-substituted benzo[k]fluoranthene derivatives as green electro-
luminescent emitters and nonlinear optical materials. J Phys Chem C 2010;
114:11602e6.
[46] Li ZX, Zhang L, Wang LN, Guo YK, Cai LH, Yu MM, et al. Highly sensitive and
selective fluorescent sensor for Zn(2þ)/Cu(2þ) and new approach for sensing
Cu(2þ) by central metal displacement. Chem Commun 2011;47:5798e800.
[47] Li ZX, Zhang LF, Zhao WY, Li XY, Guo YK, Yu MM, et al. Fluoranthene-based
pyridine as fluorescent chemosensor for Fe3þ. Inorg Chem Commun 2011;14:
1656e8.
[48] Kim BJ, Chang JY. Preparation of carbon nanospheres from diblock copolymer
micelles with cores containing curable acetylenic groups. Macromolecules
2006;39:90e4.
[49] Setayesh S, Grimsdale AC, Weil T, Enkelmann V, Müllen K, Meghdadi F, et al.
Polyfluorenes with polyphenylene dendron side chains: toward non-
aggregating, light-emitting polymers. J Am Chem Soc 2001;123:946e53.
[50] Morgenroth F, Müllen K. Dendritic and hyperbranched polyphenylenes via
a simple DielseAlder route. Tetrahedron 1997;53:15349e66.
[51] Xu X, Chen S, Yu G, Di C, You H, Ma D, et al. High-efficiency blue light-emitting
[34] Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev AI, et al.
On the development of sensor molecules that display Fe-III-amplified fluo-
rescence. J Am Chem Soc 2005;127:13522e9.
[35] Xu M, Wu S, Zeng F, Yu C. Cyclodextrin supramolecular complex as a water-
soluble ratiometric sensor for ferric ion sensing. Langmuir 2010;26:4529e34.
[36] Weerasinghe AJ, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E. Single-
and multiphoton turn-on fluorescent Fe(3þ) sensors based on bis(rhod-
amine). J Phys Chem B 2010;114:9413e9.
diodes based on a polyphenylphenyl compound with strong electron-
accepting groups. Adv Mater 2007;19:1281e5.
[52] Li ZX, Zhao WY, Zhang YN, Zhang LF, Yu MM, Liu JX, et al. An ‘offeon’ fluo-
rescent chemosensor of selectivity to Cr3þ and its application to MCF-7 cells.
Tetrahedron 2011;67:7096e100.
[53] Chiechi RC, Tseng RJ, Marchioni F, Yang Y, Wudl F. Efficient blue-light-
emitting electroluminescent devices with a robust fluorophore: 7,8,10-tri-
phenylfluoranthene. Adv Mater 2006;18:325e8.
[37] Jung HJ, Singh N, Lee DY, Jang DO. Single sensor for multiple analytes: chro-
mogenic detection of I(ꢀ) and fluorescent detection of Fe(3þ). Tetrahedron
Lett 2010;51:3962e5.
[38] Singh N, Kaur N, Dunn J, MacKay M, Callan JF. A new fluorescent chemosensor
for iron(III) based on the beta-aminobisulfonate receptor. Tetrahedron Lett
2009;50:953e6.
[54] Velusamy M, Thomas KRJ, Chen CH, Lin JT, Wen YS, Hsieh WT, et al. Synthesis,
structure and electroluminescent properties of cyclometalated iridium
complexes possessing sterically hindered ligands. Dalton Trans;
2007:3025e34.
[55] Demas JN, Grosby GA. Measurement of photoluminescence quantum yields.
Review J Phys Chem 1971;75:991e1024.
[39] Praveen L, Reddy MLP, Varma RL. Dansyl-styrylquinoline conjugate as diva-
lent iron sensor. Tetrahedron Lett 2010;51:6626e9.
[56] Solution fluorescent color changes from yellow to blue. The reader is referred
to the web version of this article.