Metal-Free Ring Expansions of MCPs Through Nitrene Equivalent
[2] For selected reviews on MCPs and highly strained small rings,
see: a) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96,
49–92; b) P. Binger, P. Wedemann, S. I. Kozhushkov, A. de Mei-
jere, Eur. J. Org. Chem. 1998, 113–119; c) A. de Meijere, S. I.
Kozhushkov, A. F. Khlebnikov, Top. Curr. Chem. 2000, 207,
89–147; d) A. de Meijere, S. I. A. Kozhushkov, Eur. J. Org.
Chem. 2000, 3809–3822; e) A. de Meijere, S. I. Kozhushkov, T.
Spath, M. von Seebach, S. Lohr, H. Nuske, T. Pohomann, M.
Es-Sayed, S. Brase, Pure Appl. Chem. 2000, 72, 1745–1756; f)
I. Nakamura, Y. Yamamoto, Adv. Synth. Catal. 2002, 344, 111–
129; g) S. Yamago, E. Nakamura, Org. React. 2002, 61, 1–217;
h) E. Nakamura, S. Yamago, Acc. Chem. Res. 2002, 35, 867–
877; i) A. Brandi, S. Cicchi, F. M. Cordero, A. Goti, Chem.
Rev. 2003, 103, 1213–1270; j) H. Maeda, K. Mizuno, J. Org.
Synth. Jpn. 2004, 62, 1014–1025; k) L.-X. Shao, M. Shi, Curr.
Org. Chem. 2007, 11, 1135–1137; l) M. Rubin, M. Rubina, V.
Gevorgyan, Chem. Rev. 2007, 107, 3117–3179; m) E. Smolen-
sky, M. Kapon, M. S. Eisen, Organometallics 2007, 26, 4510–
4527; n) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur,
Chem. Soc. Rev. 2008, 37, 320–330; o) M. Cheeseman, I. R.
Davies, P. Axe, A. L. Johnson, S. D. Bull, Org. Biomol. Chem.
2009, 7, 3537–3548; p) M. Shi, L.-X. Shao, J.-M. Lu, Y. Wei,
K. Mizuno, H. Maeda, Chem. Rev. 2010, 110, 5883–5913; q)
M. S. Baird in Carbocyclic Three- and Four-Membered Ring
Compounds (Ed.: A. de Meijere), Thieme, Stuttgart, 1997, vol.
E17d, pp. 2759–2779; r) H. Pellissier, Tetrahedron 2010, 66,
8341–8375; s) G. Audran, H. Pellissier, Adv. Synth. Catal. 2010,
352, 575–608; t) L. Yu, R. Guo, Org. Prep. Proc. Int. 2011, 43,
209–259.
[3] a) H. Nemoto, H. Ishibashi, M. Nagamochi, K. Fukumoto, J.
Org. Chem. 1992, 57, 1707–1712; b) M. Lautens, Y. Ren, J. Am.
Chem. Soc. 1996, 118, 10668–10669; c) M. Lautens, C. Meyer,
A. Lorenz, J. Am. Chem. Soc. 1996, 118, 10676–10677; d) L. X.
Shao, M. Shi, Eur. J. Org. Chem. 2004, 426–430; e) S. Ma, L.
Lu, J. Zhang, J. Am. Chem. Soc. 2004, 126, 9645–9660; f) T.
Kurahashi, A. de Meijere, Angew. Chem. 2005, 117, 8093–8096;
Angew. Chem. Int. Ed. 2005, 44, 7881–7884; g) Y. M. Shen, B.
Wang, Y. Shi, Angew. Chem. 2006, 118, 1457–1460; Angew.
Chem. Int. Ed. 2006, 45, 1429–1432; h) A. Fürstner, C. Aïssa,
J. Am. Chem. Soc. 2006, 128, 6306–6307; i) M. Shi, L. P. Liu,
J. Tang, J. Am. Chem. Soc. 2006, 128, 7430–7431; j) E. Smolen-
sky, M. Kapon, M. S. Eisen, Organometallics 2007, 26, 4510–
4527; k) G.-Q. Tian, Z.-L. Yuan, Z.-B. Zhu, M. Shi, Chem.
Commun. 2008, 2668–2670; l) X. Huang, M.-Z. Miao, J. Org.
Chem. 2008, 73, 6884–6887.
inone (Q-NH2) in the presence of iodosobenzene diacetate
under mild conditions. A variety of cyclobutylidene hydraz-
ine derivatives were obtained in moderate to excellent yields
as separable (Z)/(E) isomeric mixtures. Efforts are under-
way to further elucidate the reaction mechanism and the
scope and limitations of this reaction in the laboratory.
Experimental Section
General Procedure for Metal-Free Ring Expansions of MCPs under
the Standard Reaction Conditions: Under ambient atmosphere,
MCP
1 (0.2 mmol, 1.0 equiv.), Q-NH2 (1.5 equiv.), Na2CO3
(2.0 equiv.), and DCM (2.0 mL) were added into an Schlenk tube.
The reaction was initiated by addition of PIDA (1.7 equiv.). Then,
the reaction mixture was stirred at room temperature until the reac-
tion was complete. The solvent was removed under reduced pres-
sure, and the residue was purified by flash column chromatography
(SiO2) to give corresponding products 2 and 3 in moderate to good
yields.
Compound 2a: Yield: 59 mg, 73%. White solid. M.p. 183–185 °C.
IR (neat): ν = 3062, 3025, 2992, 1676, 1596, 1471, 1367, 1112, 909,
˜
1
767, 688 cm–1. H NMR (400 MHz, CDCl3, TMS): δ = 1.12 (t, J
= 7.2 Hz, 3 H, CH3), 2.35 (q, J = 7.2 Hz, 2 H, CH2), 2.66 (t, J =
8.0 Hz, 2 H, CH2), 3.29 (t, J = 8.0 Hz, 2 H, CH2), 7.05–7.09 (m, 6
H, Ar), 7.19 (br. s, 4 H, Ar), 7.31 (t, J = 8.0 Hz, 1 H, Ar), 7.42 (d,
J = 8.0 Hz, 1 H, Ar), 7.60 (t, J = 8.0 Hz, 1 H, Ar), 8.10 (d, J =
8.0 Hz, 1 H, Ar) ppm. 13C NMR (100 MHz, CDCl3, TMS): δ =
10.0, 27.4, 27.6, 33.3, 71.1, 121.0, 125.6, 126.5, 126.7, 127.0, 128.1,
128.2, 133.4, 146.7, 154.9, 158.1, 181.2 ppm. MS (ESI): m/z = 394
[M + H]+. HRMS (ESI): calcd. for C26H24N3O [M + H]+ 394.1914;
found 394.1929.
Compound 3a: Yield: 22 mg, 27%. White solid. M.p. 181–183 °C.
IR (neat): ν = 3051, 3020, 2932, 1675, 1591, 1468, 1364, 1140, 905,
˜
1
750, 691 cm–1. H NMR (400 MHz, CDCl3, TMS): δ = 1.13 (t, J
= 7.6 Hz, 3 H, CH3), 2.67 (q, J = 7.6 Hz, 2 H, CH2), 2.84–2.87 (m,
2 H, CH2), 2.90–2.93 (m, 2 H, CH2), 7.24–7.28 (m, 2 H, Ar), 7.37
(t, J = 7.6 Hz, 4 H, Ar), 7.43–7.47 (m, 1 H, Ar), 7.59 (d, J = 7.6 Hz,
4 H, Ar), 7.67–7.75 (m, 2 H, Ar), 8.28 (d, J = 7.6 Hz, 1 H, Ar) ppm.
13C NMR (100 MHz, CDCl3, TMS): δ = 10.9, 28.2, 29.0, 32.8,
65.3, 121.2, 126.3, 127.0, 127.1, 127.2, 128.6, 134.0, 143.4, 147.0,
156.9, 186.2 ppm. MS (ESI): m/z = 416 [M + Na]+. HRMS (ESI):
calcd. for C26H23N3NaO [M + Na]+ 416.1733; found 416.1736.
[4] a) J. K. Crandall, W. W. Conover, J. Org. Chem. 1978, 43, 3533–
3535; b) L.-P. Liu, M. Shi, J. Org. Chem. 2004, 69, 2805–2808;
c) M. Shi, B.-Y. Wang, J. Li, Eur. J. Org. Chem. 2005, 759–765;
d) L. Yu, X. Huang, Synlett 2006, 2136–2138; e) L. Yu, X.
Huang, Synlett 2007, 1371–1374; f) L. Yu, J. Meng, L. Xia, R.
Guo, J. Org. Chem. 2009, 74, 5087–5089.
Supporting Information (see footnote on the first page of this arti-
cle): 1H NMR and 13C NMR spectroscopic and analytic data of
compounds 2 and 3 as well as the X-ray data of 2a and 2D COSY
spectra of 2a and 3a.
[5] For representative references on the nonmetal-mediated ring
expansions of MCPs, see: a) M. Hanack, T. Baessler, W. Eym-
ann, W. E. Heyd, R. Kopp, J. Am. Chem. Soc. 1974, 96, 6686–
6691; b) J. K. Crandall, W. W. Conover, J. Org. Chem. 1978,
43, 3533–3535; c) A. de Meijere, I. Erden, W. Weber, D. Kauf-
mann, J. Org. Chem. 1988, 53, 152–161; d) M. W. Nötzel, K.
Rauch, T. Labahn, A. de Meijere, Org. Lett. 2002, 4, 839–841;
e) M. Lautens, W. Han, J. Am. Chem. Soc. 2002, 124, 6312–
6316; f) M. Lautens, W. Han, J. H. Liu, J. Am. Chem. Soc.
2003, 125, 4028–4029; g) L. P. Liu, M. Shi, J. Org. Chem. 2004,
69, 2805–2808; h) M. E. Scott, W. Han, M. Lautens, Org. Lett.
2004, 6, 3309–3312; i) M. E. Scott, M. Lautens, Org. Lett.
2005, 7, 3045–3047; j) L. Lu, G. Chen, S. Ma, Org. Lett. 2006,
8, 835–838; k) M. E. Scott, C. A. Schwarz, M. Lautens, Org.
Lett. 2006, 8, 5521–5524; l) M. E. Scott, Y. Bethuel, M. Laut-
ens, J. Am. Chem. Soc. 2007, 129, 1482–1483; m) X. Huang, Y.
Yang, Org. Lett. 2007, 9, 1667–1670; n) V. Bagutski, A. de Mei-
jere, Adv. Synth. Catal. 2007, 349, 1247–1255; o) C. Taillier, M.
Lautens, Org. Lett. 2007, 9, 591–593; p) M. E. Scott, M. Laut-
Acknowledgments
We thank the Shanghai Municipal Committee of Science and Tech-
nology (08dj1400100-2), National Basic Research Program of
China (973)-2009CB825300, and the National Natural Science
Foundation of China for financial support (21072206, 20472096,
20872162, 20672127, 20821002, and 20732008).
[1] a) A. de Meijere (Ed.), Topics in Current Chemistry Vol. 178:
Small Ring Compounds in Organic Synthesis V, Springer, Berlin,
1996, ; b) A. de Meijere (Ed.), Topics in Current Chemistry Vol.
207: Small Ring Compounds in Organic Synthesis VI, Springer,
Berlin, 2000.
Eur. J. Org. Chem. 2011, 4940–4944
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4943