LETTER
Silanolate Redution of APC
2927
vacuo two times to give 1.150 g (89%) of K+1a– as an off-white sol-
id. Data for K+1a–: 1H NMR (500 MHz, THF-d8): d = 7.55 (d, 2 H,
J = 7.8 Hz), 7.21 (t, 2 H, J = 7.6 Hz), 7.13–7.16 (m, 1 H), 0.07 (s, 6
H).
(6) For representative examples, see: (a) Hiyama, T.; Hatanaka,
Y. Pure Appl. Chem. 1994, 66, 1471. (b) Wallow, T. I.;
Novak, B. M. J. Org. Chem. 1994, 59, 5034. (c) Feuerstein,
M.; Doucet, H.; Santelli, M. Tetrahedron Lett. 2004, 45,
8443.
Potassium Dimethyl(1-naphthyl)silanolate (K+1b–)
1H NMR (500 MHz, THF-d8): d = 8.67–8.69 (m, 1 H), 7.69–7.78
(m, 3 H), 7.31–7.38 (m, 3 H), 0.22 (s, 6 H). 13C NMR (125 MHz,
THF-d8): d = 147.7, 138.7, 134.8, 132.7, 129.9, 129.5, 128.5, 126.0,
125.7, 125.4, 5.1.
(7) Trzeciak, A. M.; Ziólkowski, J. J. Coord. Chem. Rev. 2005,
249, 2308.
(8) (a) Mason, M. R.; Verkade, J. G. Organometallics 1992, 11,
2212. (b) Amatore, C.; Jutand, A.; Barki’, M. A. M.
Organometallics 1992, 11, 3009. (c) Ozawa, F.; Kubo, A.;
Hayashi, T. Chem. Lett. 1992, 2177. (d)Amatore, C.; Carre,
E.; Jutand, A.; Barki’, M. A. M. Organometallics 1995, 14,
1818. (e) Amatore, C.; Jutand, A. J. Organomet. Chem.
1999, 576, 254.
Potassium Dimethyl(4-methoxy)phenylsilanolate (K+1c–)
1H NMR (500 MHz, THF-d8): d = 7.45 (d, 2 H, J = 8.5 Hz), 6.79 (d,
2 H, J = 8.3 Hz), 3.72 (s, 3 H), 0.05 (s, 6 H).
(9) Treciak, A. M.; Ciunik, Z.; Ziólkowski, J. J.
Organometallics 2002, 21, 132.
(10) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009; and references therein.
(11) (a) Viciu, M. S.; Germaneau, R. F.; Navarro-Fernandez, O.;
Stevens, E. D.; Nolan, S. P. Organometallics 2002, 21,
5470. (b) Viciu, M. S.; Navarro, O.; Germaneau, R. F.;
Kelly, R. A.; Sommer, W.; Marion, N.; Stevens, E. D.;
Cavallo, L.; Nolan, S. P. Organometallics 2004, 23, 1629.
(12) Denmark, S. E.; Kobayashi, T. J. Org. Chem. 2003, 68,
5153.
(13) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95,
292.
(14) Denmark, S. E.; Sweis, R. F. In Metal-Catalyzed Cross-
Coupling Reactions, Vol. 1; de Meijere, A.; Diederich, F.,
Eds.; Wiley-VCH: Weinheim, 2004, Chap. 4.
(15) (a) Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565.
(b) Denmark, S. E.; Neuville, L. Org. Lett. 2000, 2, 3221.
(c) Denmark, S. E.; Ober, M. H. Org. Lett. 2003, 5, 1357.
(d) Denmark, S. E.; Ober, M. H. Adv. Synth. Catal. 2004,
346, 1703. (e) Denmark, S. E.; Yang, S.-M. Tetrahedron
2004, 60, 9695. (f) Denmark, S. E.; Yang, S.-M. J. Am.
Chem. Soc. 2004, 126, 12432.
Potassium Dimethyl(4-trifluoromethyl)phenylsilanolate
(K+1d–)
1H NMR (500 MHz, THF-d8): d = 7.73 (d, 2 H, J = 7.3 Hz), 7.51 (d,
2 H, J = 7.6 Hz), 0.12 (s, 6 H).
Preparation of Rubidium Dimethylphenylsilanolate (Rb+1a–)
In a dry box, a one-neck flask was charged with dry, degassed ben-
zene (17 mL) followed by rubidium metal (296 mg, 3.46 mmol). To
this suspension was added dimethylphenylsilanol (554 mg, 3.64
mmol, 1.05 equiv) dropwise over 5 min. The resulting mixture was
stirred for 30 min further, and then was filtered through a medium-
porosity fritted funnel into a preweighed one-neck flask fitted with
a vacuum stopcock adaptor. The flask was removed from the dry
box and the solvent evaporated in vacuo to give a semi-solid. The
residue was transferred back into the dry box and was washed with
dry hexane (5 mL) and filtered through a medium-porosity fritted
funnel. The collected solids were further washed with dry hexane
(3 × 5 mL). The solids were placed in a flame-dried, 15-mL recov-
ery flask equipped with a vacuum stopcock adaptor and any excess
volatiles were removed in vacuo to give 302 mg (37%) of Rb+1a– as
1
a white, powdered solid. Data for Rb+1a–: H NMR (500 MHz,
THF-d8): d = 7.55 (dd, 2 H, J1 = 1.2 Hz, J2 = 7.8 Hz), 7.12–7.21 (m,
3 H), 0.07 (s, 6 H).
(16) Denmark, S. E.; Baird, J. D. Chem. Eur. J. 2006, 12, 4954.
(17) Denmark, S. E.; Ober, M. H., unpublished results.
(18) The formation of Pd(0) from this process was confirmed by
the identification of dppbPd(dba) in the reduction mixture
from K+1a–, dpppPd(allyl)Cl, and dba. In this experiment, no
palladium black was observed. The 31P NMR spectrum
(CDCl3) of this reaction mixture showed two broad peaks at
d = 23.3 and 17.2 ppm which are in good agreement with
those reported by Jutand for this compound (in THF) at d =
21.3 and 17.5 ppm. No free dppb was observed. See:
Amatore, C.; Broeker, G.; Jutand, A.; Khalil, F. J. Am.
Chem. Soc. 1997, 119, 5176.
Preparation of Cesium Dimethylphenylsilanolate (Cs+1a–)
Following the same procedure for the preparation of the rubidium
silanolate gave 272 mg (90%) of Cs+1a– as a white, powdered solid.
Data for Cs+1a–: 1H NMR (500 MHz, THF-d8): d = 7.56 (dd, 2 H,
J1 = 1.2 Hz, J2 = 7.8 Hz), 7.18–7.22 (m, 2 H), 7.12–7.15 (m, 1 H),
0.09 (s, 6 H).
Acknowledgment
We are grateful to the NIH RO1 GM63167. R.C.S. acknowledges
the University of Illinois for the Carl S. Marvel Graduate Fel-
lowship.
(19) Cantat, T.; Génin, E.; Giroud, C.; Meyer, G.; Jutand, A. J.
Organomet. Chem. 2003, 687, 365.
(20) The presence of the disiloxane was confirmed by GC-MS
analysis. This peak was the major constituent in the GC
chromatogram as determined by relative area percents.
(21) (a) Åkermark, B.; Zetterberg, K.; Hansson, S.;
Krakenberger, B.; Vitagliano, A. J. Organomet. Chem.
1987, 335, 133. (b) Oslob, J. D.; Åkermark, B.; Helquist, P.;
Norrby, P. Organometallics 1997, 16, 3015.
(c) Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M. Eur. J. Inorg. Chem. 1998, 25. (d) van Haaren, R. J.;
Goubitz, K.; Fraanje, J.; van Strijdonck, G. P. F.; Oevering,
H.; Coussens, B.; Reek, J. N. H.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. Inorg. Chem. 2001, 40, 3363.
(22) The stability of the silanolate was tested using 1H NMR
spectroscopy. The 1H NMR spectrum of a 0.075 M solution
of K+1a– in CH2Cl2 was unchanged after standing at r.t. for
5 h.
References and Notes
(1) (a) Smidt, J.; Hafner, W. Angew. Chem. 1959, 71, 284.
(b) Hüttel, R.; Kratzer, J. Angew. Chem. 1959, 71, 456.
(2) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett.
1965, 49, 4387.
(3) Trost, B. M. Chem. Rev. 1996, 96, 395; and references
therein.
(4) Hayashi, T.; Uozumi, Y. J. Am. Chem. Soc. 1991, 113, 9887.
(5) Shirakawa, E.; Yoshida, H.; Kurahashi, T.; Nakao, Y.;
Hiyama, T. J. Am. Chem. Soc. 1998, 120, 2975.
Synlett 2006, No. 18, 2921–2928 © Thieme Stuttgart · New York