Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
V. Jeena, R. S. Robinson / Tetrahedron Letters 55 (2014) 642–645
645
Table 2
decreases the product output), but rather an air-mediated pressure
build-up has a major influence on the reaction outcome. Further
mechanistic studies are underway into pressurised microwave
synthesis as well as an expansion of this approach to other one-
pot tandem coupling reactions.
a
Synthesis of 2-phenylquinoxaline under various atmospheric conditions
H2N
5 mg silica gel
70 oC, 10 min
N
N
O
H2N
OH
Supplementary data
Entry
Conditions
Yieldb (%)
1
2
3
4
5
6
Microwave/N2
Microwave/air (open vessel)
Microwave/O2
Microwave/evacuated/closed vessel
Microwave/closed vessel
Microwave/evacuated/100 ll MeOH (Induced pressure)
41
38
12
8
81
85
Supplementary data associated with this article can be
2013. 11.100.
References and Notes
a
Reaction conditions.
Isolated yield.
b
1. (a) Sakata, G.; Makino, K.; Kurasawa, Y. Heterocycles 1988, 27, 2481; (b) Seitz, L.
E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604; (c) Gazit, A.; App,
G.; McMahon, G.; Chen, J.; Levitzki, A.; Bohmer, F. D. J. Med. Chem. 1996, 39,
2170; (d) Kleim, J.-P.; Rösner, M.; Winkler, I.; Paessens, A.; Kirsch, R.; Hsiou, E.;
Riess, G. Proc. Natl. Acad. Sci. 1996, 93, 34; For reviews, see: (e) Mamedov, V. A.;
Zhukova, N. A. Prog. Heterocycl. Chem. 2012, 24, 55; (f) Mamedov, V. A.;
Zhukova, N. A. Prog. Heterocycl. Chem. 2013, 25, 1.
gases were evacuated and the mixture irradiated under closed ves-
sel conditions. During the irradiation process, the pressure gauge
remained at 0 psi and thereafter only 8% of the desired quinoxaline
was isolated (Table 2, entry 4). Under identical reaction conditions,
except without the removal of air, the desired product was formed
in an isolated yield of 81% (Table 2, entry 5). This observation sug-
gests that under closed vessel microwave irradiation the air pres-
ent in the reaction vessel produces a minor pressure build-up,
which in combination with silica gel results in the formation of
the quinoxaline derivatives. To further support this idea, we pro-
ceeded to induce pressure into the system by heating methanol
above its boiling point. Under these conditions, the reaction vessel
was charged with the reactants, the surrounding gases were evac-
2. Brown, D. J. Quinoxalines: Supplement II, The Chemistry of Heterocyclic
Compounds; John Wiley & Sons: New Jersey, USA, 2004.
3. Jafarpour, M.; Rezaeifard, A.; Danehchin, M. Appl. Catal., A: Gen. 2011, 394, 48.
4. Mahesh, R.; Dhar, A. K.; T. S. T. V. N. V.; Thirunavukkarsu, S.; Devadoss, T. Chin.
Chem. Lett. 2011, 22, 389.
}
5. Lu, H.-Y.; Yang, S.-H.; Deng, J.; Zhang, Z.-H. Aust. J. Chem. 2010, 63, 1290.
6. Niknam, K.; Saberi, D.; Mohagheghnejad, M. Molecules 2009, 14, 1915.
7. Cai, J.-J.; Zou, J.-P.; Pan, X. –Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386.
8. Yadav, J. S.; Subba Reddy, B. V.; Premlatha, K.; Shankar, K. S. Synthesis 2008, 12,
3787.
9. Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851.
10. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788.
11. Kotharkar, S. A.; Shinde, D. B. Bull. Korean Chem. Soc. 2006, 27, 1466.
12. Cho, C. S.; Oh, S. G. Tetrahedron Lett. 2006, 47, 5633.
13. Song, W.; Liu, P.; Lei, H.; You, X.; Chen, H.; Chen, L.; Ma, L.; Hu, L. Synth.
Commun. 2012, 42, 236.
uated and 100
we were aware that the reaction needed to be conducted under
solvent-free conditions, the addition of just 100 l of methanol
ll of dry methanol was added to create a paste. As
14. (a) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57,
9225; (b) Caddick, S.; Fitzmaurice Tetrahedron 2009, 65, 3325; (c) Kappe, C. O.
Angew. Chem., Int. Ed. 2004, 43, 6250.
l
and subsequent heating of the paste at 70 °C would create a sol-
vent-free pressurised environment as the reaction is conducted
in a sealed vessel above the boiling point of methanol. When the
above conditions were employed the desired product was isolated
in a yield of 85% further supporting the hypothesis of the impor-
tance of a pressure build-up for the reaction outcome. The pressure
required to facilitate this reaction is significantly smaller, when
compared to the Diels–Alder system, which may be due to the for-
mation of a highly conjugated species in our case, which is a
favourable process.
15. Collins, M. J., Jr Future Med. Chem. 2010, 2, 151.
16. (a) Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321; (b) Stadler,
A.; Pichler, S.; Horeis, G.; Kappe, C. O. Tetrahedron 2002, 58, 3177.
17. (a) Robinson, R. S.; Taylor, R. J. K. Synlett 2005, 1003; (b) Jeena, V.; Robinson, R.
S. Beilstein J. Org. Chem. 2009, 5, 24.
18. (a) Polshettiwar, V.; Varma, R. S. Acc. Chem. Res. 2008, 41, 629; (b) Varma, R. S.
Green Chem. 1999, 1, 43.
19. (a) Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. Synth. Commun. 2011, 41, 417;
(b) Hasaninejad, A.; Shekouhy, M.; Zare, A. Catal. Sci. Technol. 2012, 2, 201.
20. Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.
21. Mandal, M.; Kim, S.; Younes, M. N.; Jasser, S. A.; El-Naggar, A. K.; Mills, G. B.;
Myers, J. N. Br. J. Cancer 2005, 92, 1899.
In conclusion, we have reported a convenient method for the
synthesis of heterocyclic compounds. A series of quinoxaline deriv-
atives was formed in good to excellent yields in short reaction
times. The system was also applied with comparable success to
the synthesis of 2,3- diphenylpyrazine, a potential cancer antago-
nist. The aforementioned methodology is simple, environmentally
friendly and constitutes a very cost effective synthetic route to
these heterocyclic compounds as it is conducted in the absence
of solvent and is free of expensive catalysts and reagents. Prelimin-
ary mechanistic investigations have indicated that oxygen is not
the stoichiometric oxidant (in fact, an oxygen atmosphere
22. Fresno Vara, J. A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; Gonzàlez-
Barón, M. Cancer Treat. Rev. 2004, 2, 193.
23. (a) Bilodeau, M. T.; Duggan, M. E.; Hartnett, J. C.; Lindsley, C. W.; Manley, P. J.;
Zhao, Z., PCT Int. Appl. WO2003086394 A1, 2003; Chem. Abstr. 2003, 139.; (b)
Miralinaghi, P.; Salimi, M.; Shirmohammadli, S.; Amini, M. Int. J. Pharm. Biol. Sci.
2011, 2, 60.
24. Wu, Q.-H.; Wang, C.-H.; Song, X.-M.; Zhang, G.-L. Chin. J. Chem. Phys. 2010, 23,
355.
25. Darkins, P.; Groarke, M.; McKervey, A.; Monicrieff, H. M.; McCarthy, N.;
Nieuwenhuyzen, M. J. Chem. Soc., Perkin Trans. 1 2000, 381.
26. Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 4274.
27. Noorzi-Pesyan, N.; Dabbagh, A. H. Molecules 2005, 10, 1364.
28. Kaval, N.; Dehaen, W.; Kappe, C. O.; Van der Eycken, E. Org. Biomol. Chem. 2004,
2, 154