Organic & Biomolecular Chemistry
Paper
Notes and references
1 For reviews, see: (a) Chromenes, Chromanones, and
Chromones, ed. G. P. Ellis, Wiley-Interscience, New York,
1977; (b) Comprehensive Heterocyclic Chemistry II, ed.
A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon,
Oxford, 1996.
Scheme 3 Reaction of α,β-unsaturated thioester.
2 For reviews, see: (a) H. C. Shen, Tetrahedron, 2009, 65,
3931; (b) M. Núñez, P. García, R. F. Moro and D. Díez, Tetra-
hedron, 2010, 66, 2089.
other (E)-Michael-acceptor moieties.11 Electron-rich substrates
were also effective, providing the chroman products in high
yield and comparable enantioselectivity (Table 2, entries 2
and 3). A starting material bearing an electron-withdrawing
group afforded the corresponding product in high yield,
although the enantiomeric excess was slightly lower (Table 2,
entry 4). A substrate with a p-bromophenyl substituent yielded
the corresponding product quantitatively in high enantio-
selectivity (Table 2, entry 5); however, a 2-naphthyl-substituted
enone gave the resultant product in lower yield and stereo-
selectivity (Table 2, entry 6). Unfortunately, a methylketone
proved to be an unsuccessful substrate (Table 2, entry 7). Sub-
stituents on the phenol moiety were also investigated, and a
substrate with a methoxy group gave the corresponding
product in good yield with moderate enantioselectivity
(Table 2, entry 8), although a phenol derivative with a bromo
group resulted in lower yield and stereoselectivity (Table 2,
entry 9). To our delight, an α,β-unsaturated thioester partici-
pated in the cyclization reaction, yielding a chroman derivative
suitable for various subsequent transformations, demonstrat-
ing the synthetic utility of our method (Scheme 3). The abso-
lute configuration of 2e was determined as (R) using X-ray
analysis (see ESI† for details), and the configurations of all
other examples were assigned accordingly.
3 For selected examples, see: (a) Y. Uozumi, K. Kato and
T. Hayashi, J. Am. Chem. Soc., 1997, 119, 5063;
(b) E. Mizuguchi and K. Achiwa, Chem. Pharm. Bull., 1997,
45, 1209; (c) B. M. Trost and F. D. Toste, J. Am. Chem. Soc.,
1998, 120, 9074; (d) B. M. Trost and N. Asakawa, Synthesis,
1999, 1491; (e) B. M. Trost, H. C. Shen and J.-P. Surivet,
Angew. Chem., Int. Ed., 2003, 42, 3943; (f) B. M. Trost,
H. C. Shen, L. Dong and J.-P. Surivet, J. Am. Chem. Soc.,
2003, 125, 9276; (g) B. M. Trost, H. C. Shen, L. Dong,
J.-P. Surivet and C. Sylvain, J. Am. Chem. Soc., 2004, 126,
11966; (h) J.-R. Labrosse, C. Poncet, P. Lhoste and D. Sinou,
Tetrahedron: Asymmetry, 1999, 10, 1069; (i) K. Ishihara,
S. Nakamura and H. Yamamoto, J. Am. Chem. Soc., 1999,
121, 4906; ( j) S. Nakamura, K. Ishihara and H. Yamamoto,
J. Am. Chem. Soc., 2000, 122, 8131; (k) H. Ishibashi,
K. Ishihara and H. Yamamoto, J. Am. Chem. Soc., 2004, 126,
11122; (l) L. F. Tietze, K. M. Sommer, J. Zinngrebe and
F. Stecker, Angew. Chem., Int. Ed., 2005, 44, 257;
(m) L. F. Tietze, F. Stecker, J. Zinngrebe and K. M. Sommer,
Chem.–Eur. J., 2006, 12, 8770; (n) K. Liu, A. Chougnet and
W.-D. Woggon, Angew. Chem., Int. Ed., 2008, 47, 5827;
(o) Y. K. Chung and G. C. Fu, Angew. Chem., Int. Ed., 2009,
48, 2225; (p) L.-Q. Lu, F. Li, J. An, J.-J. Zhang, X.-L. An,
Q.-L. Hua and W.-J. Xiao, Angew. Chem., Int. Ed., 2009, 48,
9542; (q) X.-F. Wang, Q.-L. Hua, Y. Cheng, X.-L. An,
Q.-Q. Yang, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int.
Ed., 2010, 49, 8379; (r) X.-F. Wang, J. An, X.-X. Zhang,
F. Tan, J.-R. Chen and W.-J. Xiao, Org. Lett., 2011, 13, 808;
(s) L.-Q. Lu, Z.-H. Ming, J. An, C. Li, J.-R. Chen and
W.-J. Xiao, J. Org. Chem., 2012, 77, 1072; (t) X.-G. Song,
S.-F. Zhu, X.-L. Xie and Q.-L. Zhou, Angew. Chem., Int. Ed.,
2013, 52, 2555; (u) H. Wu, Y.-P. He and L.-Z. Gong,
Org. Lett., 2013, 15, 460; (v) W. Yang, Y. Yang and D.-M. Du,
Org. Lett., 2013, 15, 1190; (w) Z.-X. Jia, Y.-C. Luo,
X.-N. Cheng, P.-F. Xu and Y.-C. Gu, J. Org. Chem., 2013, 78,
6488.
Conclusions
In summary, we have presented a novel asymmetric chroman
synthesis via an intramolecular oxy-Michael addition employ-
ing bifunctional aminourea catalysts. In this method, sub-
strates bearing an easily available (E)-Michael acceptor
including α,β-unsaturated ketones and thioesters could be
used, thereby leading to a facile and versatile approach to opti-
cally active chromans. Further studies on the expansion of the
substrate scope and the application of this methodology
toward other heterocyclic scaffolds are currently underway in
our laboratory and will be reported in due course.
4 (a) A. Merschaert, P. Delbeke, D. Daloze and G. Dive, Tetra-
hedron Lett., 2004, 45, 4697; (b) N. Saito, A. Ryoda,
W. Nakanishi, T. Kumamoto and T. Ishikawa, Eur. J. Org.
Chem., 2008, 2759.
5 Analogous intramolecular oxy-Michael additions to form
chromans from (E)-substrates by a bifunctional organocata-
lyst have been recently reported, and the utility is specific
to slow reactions from α,β-unsaturated amides, see:
Y. Kobayashi, Y. Taniguchi, N. Hayama, T. Inokuma and
Y. Takemoto, Angew. Chem., Int. Ed., 2013, 52, 11114.
Acknowledgements
We thank Professor Takuya Kurahashi (Kyoto University) for
X-ray crystallographic analysis. This work was supported finan-
cially by the Japanese Ministry of Education, Culture, Sports,
Science and Technology.
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 119–122 | 121