Page 5 of 6
Journal of the American Chemical Society
Design for the Degradation of Oncogenic BCR-ABL. Angew Chem Int Ed
Krämer, O. H., Breakdown of the FLT3-ITD/STAT5 Axis and Synergistic
Apoptosis Induction by the Histone Deacetylase Inhibitor Panobinostat
and FLT3-Specific Inhibitors. Molecular Cancer Therapeutics 2012, 11
(11), 2373-2383.
Engl 2016, 55 (2), 807-10; (c) Bondeson, D. P.; Smith, B. E.; Burslem, G.
M.; Buhimschi, A. D.; Hines, J.; Jaime-Figueroa, S.; Wang, J.; Hamman,
B. D.; Ishchenko, A.; Crews, C. M., Lessons in PROTAC Design from
Selective Degradation with a Promiscuous Warhead. Cell Chemical
Biology 2018, 25 (1), 78-87; (d) Schiedel, M.; Herp, D.; Hammelmann,
S.; Swyter, S.; Lehotzky, A.; Robaa, D.; Oláh, J.; Ovádi, J.; Sippl, W.;
Jung, M., Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a
Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging
Ligands (SirReals). Journal of Medicinal Chemistry 2018, 61 (2), 482-
1
2
3
4
5
6
7
8
9
12.
Green, A. S.; Maciel, T. T.; Hospital, M.-A.; Yin, C.; Mazed,
F.; Townsend, E. C.; Pilorge, S.; Lambert, M.; Paubelle, E.; Jacquel, A.;
Zylbersztejn, F.; Decroocq, J.; Poulain, L.; Sujobert, P.; Jacque, N.; Adam,
K.; So, J. C. C.; Kosmider, O.; Auberger, P.; Hermine, O.; Weinstock, D.
M.; Lacombe, C.; Mayeux, P.; Vanasse, G. J.; Leung, A. Y.; Moura, I. C.;
Bouscary, D.; Tamburini, J., Pim kinases modulate resistance to FLT3
tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Science
Advances 2015, 1 (8).
4
91; (e) Salami, J.; Alabi, S.; Willard, R. R.; Vitale, N. J.; Wang, J.; Dong,
H.; Jin, M.; McDonnell, D. P.; Crew, A. P.; Neklesa, T. K.; Crews, C. M.,
Androgen receptor degradation by the proteolysis-targeting chimera
ARCC-4 outperforms enzalutamide in cellular models of prostate cancer
drug resistance. Communications Biology 2018, 1 (1), 100; (f) Buhimschi,
A. D.; Armstrong, H. A.; Toure, M.; Jaime-Figueroa, S.; Chen, T. L.;
Lehman, A. M.; Woyach, J. A.; Johnson, A. J.; Byrd, J. C.; Crews, C. M.,
Targeting the C481S Ibrutinib-Resistance Mutation in Bruton’s Tyrosine
Kinase Using PROTAC-Mediated Degradation. Biochemistry 2018, 57
13.
(a) Chao, Q.; Sprankle, K. G.; Grotzfeld, R. M.; Lai, A. G.;
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Carter, T. A.; Velasco, A. M.; Gunawardane, R. N.; Cramer, M. D.;
Gardner, M. F.; James, J.; Zarrinkar, P. P.; Patel, H. K.; Bhagwat, S. S.,
Identification of N-(5-tert-Butyl-isoxazol-3-yl)-N′-{4-[7-(2-morpholin-4-
yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea
Dihydrochloride (AC220), a Uniquely Potent, Selective, and Efficacious
FMS-Like Tyrosine Kinase-3 (FLT3) Inhibitor. J. Med. Chem. 2009, 52
(23), 7808-7816; (b) Zarrinkar, P. P.; Gunawardane, R. N.; Cramer, M. D.;
Gardner, M. F.; Brigham, D.; Belli, B.; Karaman, M. W.; Pratz, K. W.;
Pallares, G.; Chao, Q.; Sprankle, K. G.; Patel, H. K.; Levis, M.;
Armstrong, R. C.; James, J.; Bhagwat, S. S., AC220 is a uniquely potent
and selective inhibitor of FLT3 for the treatment of acute myeloid
leukemia (AML). Blood 2009, 114 (14), 2984-2992.
(26), 3564-3575; (g) Winter, G. E.; Buckley, D. L.; Paulk, J.; Roberts, J.
M.; Souza, A.; Dhe-Paganon, S.; Bradner, J. E., Phthalimide conjugation
as a strategy for in vivo target protein degradation. Science 2015, 348
(6241), 1376-1381; (h) Huang, H.-T.; Dobrovolsky, D.; Paulk, J.; Yang,
G.; Weisberg, E. L.; Doctor, Z. M.; Buckley, D. L.; Cho, J.-H.; Ko, E.;
Jang, J.; Shi, K.; Choi, H. G.; Griffin, J. D.; Li, Y.; Treon, S. P.; Fischer,
E. S.; Bradner, J. E.; Tan, L.; Gray, N. S., A Chemoproteomic Approach
to Query the Degradable Kinome Using a Multi-kinase Degrader. Cell
Chemical Biology 2018, 25 (1), 88-99.e6; (i) Itoh, Y.; Ishikawa, M.;
Naito, M.; Hashimoto, Y., Protein Knockdown Using Methyl
Bestatin−Ligand Hybrid Molecules: Design and Synthesis of Inducers of
Ubiquitination-Mediated Degradation of Cellular Retinoic Acid-Binding
Proteins. Journal of the American Chemical Society 2010, 132 (16), 5820-
14.
(a) Buckley, D. L.; Gustafson, J. L.; VanꢁMolle, I.; Roth, A. G.;
Tae, H. S.; Gareiss, P. C.; Jorgensen, W. L.; Ciulli, A.; Crews, C. M.,
Small-Molecule Inhibitors of the Interaction between the E3 Ligase VHL
and HIF1α. Angewandte Chemie International Edition 2012, 51 (46),
11463-11467; (b) Buckley, D. L.; Van Molle, I.; Gareiss, P. C.; Tae, H. S.;
Michel, J.; Noblin, D. J.; Jorgensen, W. L.; Ciulli, A.; Crews, C. M.,
Targeting the von Hippel–Lindau E3 Ubiquitin Ligase Using Small
Molecules To Disrupt the VHL/HIF-1α Interaction. Journal of the
American Chemical Society 2012, 134 (10), 4465-4468.
5
826; (j) Ohoka, N.; Nagai, K.; Hattori, T.; Okuhira, K.; Shibata, N.; Cho,
N.; Naito, M., Cancer cell death induced by novel small molecules
degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell
Death Dis 2014, 5, e1513; (k) Okitsu, K.; Hattori, T.; Misawa, T.; Shoda,
T.; Kurihara, M.; Naito, M.; Demizu, Y., Development of a Small Hybrid
Molecule That Mediates Degradation of His-Tag Fused Proteins. J Med
Chem 2018, 61 (2), 576-582; (l) Zengerle, M.; Chan, K. H.; Ciulli, A.,
Selective Small Molecule Induced Degradation of the BET Bromodomain
Protein BRD4. ACS Chem. Biol. 2015, 10, 1770.
15.
Weisberg, E.; Ray, A.; Nelson, E.; Adamia, S.; Barrett, R.;
Sattler, M.; Zhang, C.; Daley, J. F.; Frank, D.; Fox, E.; Griffin, J. D.,
Reversible Resistance Induced by FLT3 Inhibition: A Novel Resistance
Mechanism in Mutant FLT3-Expressing Cells. PLOS ONE 2011, 6 (9),
e25351.
16.
Gustafson, J. L.; Neklesa, T. K.; Cox, C. S.; Roth, A. G.;
Buckley, D. L.; Tae, H. S.; Sundberg, T. B.; Stagg, D. B.; Hines, J.;
McDonnell, D. P.; Norris, J. D.; Crews, C. M., Small-Molecule-Mediated
Degradation of the Androgen Receptor through Hydrophobic Tagging.
Angew. Chem., Int. Ed. 2015, 54, 9659.
4
.
(a) Burslem, G. M.; Smith, B. E.; Lai, A. C.; Jaime-Figueroa,
S.; McQuaid, D. C.; Bondeson, D. P.; Toure, M.; Dong, H.; Qian, Y.;
Wang, J.; Crew, A. P.; Hines, J.; Crews, C. M., The Advantages of
Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell
Chemical Biology 2018, 25 (1), 67-77.e3; (b) Lemmon, M. A.;
Schlessinger, J., Cell Signaling by Receptor Tyrosine Kinases. Cell 2010,
141 (7), 1117-1134.
17.
Smith, C. C.; Lasater, E. A.; Zhu, X.; Lin, K. C.; Stewart, W.
K.; Damon, L. E.; Salerno, S.; Shah, N. P., Activity of ponatinib against
clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD.
Blood 2013, 121 (16), 3165-3171.
5
.
Birg, F.; Courcoul, M.; Rosnet, O.; Bardin, F.; Pebusque, M.;
18.
(a) Auclair, D.; Miller, D.; Yatsula, V.; Pickett, W.; Carter, C.;
Marchetto, S.; Tabilio, A.; Mannoni, P.; Birnbaum, D., Expression of the
FMS/KIT-like gene FLT3 in human acute leukemias of the myeloid and
lymphoid lineages. Blood 1992, 80 (10), 2584-2593.
Chang, Y.; Zhang, X.; Wilkie, D.; Burd, A.; Shi, H.; Rocks, S.; Gedrich,
R.; Abriola, L.; Vasavada, H.; Lynch, M.; Dumas, J.; Trail, P. A.;
Wilhelm, S. M., Antitumor activity of sorafenib in FLT3-driven leukemic
cells. Leukemia 2007, 21, 439; (b) O'Farrell, A. M.; Abrams, T. J.; Yuen,
H. A.; Ngai, T. J.; Louie, S. G.; Yee, K. W.; Wong, L. M.; Hong, W.; Lee,
L. B.; Town, A.; Smolich, B. D.; Manning, W. C.; Murray, L. J.; Heinrich,
M. C.; Cherrington, J. M., SU11248 is a novel FLT3 tyrosine kinase
inhibitor with potent activity in vitro and in vivo. Blood 2003, 101 (9),
3597-605.
6.
Epidemiology and etiology. Cancer 2006, 107 (9), 2099-2107.
Thiede, C.; Steudel, C.; Mohr, B.; Schaich, M.; Schäkel, U.;
Deschler, B.; Lübbert, M., Acute myeloid leukemia:
7
.
Platzbecker, U.; Wermke, M.; Bornhäuser, M.; Ritter, M.; Neubauer, A.;
Ehninger, G.; Illmer, T., Analysis of FLT3-activating mutations in 979
patients with acute myelogenous leukemia: association with FAB subtypes
and identification of subgroups with poor prognosis. Blood 2002, 99 (12),
19.
Lai, A. C.; Crews, C. M., Induced protein degradation: an
4
326-4335.
8.
emerging drug discovery paradigm. Nature Reviews Drug Discovery
2016, 16, 101.
Smith, C. C.; Wang, Q.; Chin, C.-S.; Salerno, S.; Damon, L.
E.; Levis, M. J.; Perl, A. E.; Travers, K. J.; Wang, S.; Hunt, J. P.;
Zarrinkar, P. P.; Schadt, E. E.; Kasarskis, A.; Kuriyan, J.; Shah, N. P.,
Validation of ITD mutations in FLT3 as a therapeutic target in human
acute myeloid leukaemia. Nature 2012, 485 (7397), 260-263.
9.
Grunwald, M. R.; Levis, M. J., FLT3 inhibitors for acute
myeloid leukemia: a review of their efficacy and mechanisms of
resistance. International Journal of Hematology 2013, 97 (6), 683-694.
1
0.
Pratz, K. W.; Cortes, J.; Roboz, G. J.; Rao, N.; Arowojolu, O.;
Stine, A.; Shiotsu, Y.; Shudo, A.; Akinaga, S.; Small, D.; Karp, J. E.;
Levis, M., A pharmacodynamic study of the FLT3 inhibitor KW-2449
yields insight into the basis for clinical response. Blood 2009, 113 (17),
3
938-3946.
11.
Pietschmann, K.; Bolck, H. A.; Buchwald, M.; Spielberg, S.;
Polzer, H.; Spiekermann, K.; Bug, G.; Heinzel, T.; Böhmer, F.-D.;
ACS Paragon Plus Environment