H. Wu et al. / Journal of Photochemistry and Photobiology B: Biology 107 (2012) 65–72
71
alkylbenzimidazoles bearing a N-phenylpyrrole moiety as novel angiotensin
II AT1 receptor antagonists, Bioorg. Med. Chem. Lett. 17 (2007) 2921–2926.
[4] P.D. Patel, M.R. Patel, N. Kaushik-Basu, T.T. Talele, 3D QSAR and molecular
docking studies of benzimidazole derivatives as hepatitis
polymerase Inhibitors, J. Chem. Inf. Model. 48 (2008) 42–55.
C virus NS5B
[5] K. Taniguchi, S. Shigenaga, T. Ogahara, T. Fujitsu, M. Matsuo, Synthesis and
antiinflammatory and analgesic properties of 2-amino-1H-benzimidazole and
1,2-dihydro-2-iminocycloheptimidazole derivatives, Chem. Pharm. Bull. 41
(1993) 301–309.
[6] S. Estrada-Soto, R. Villalobos-Molina, F. Aguirre-Crespo, J. Vergara-Galicia, H.
Oreno-DÍaz, M. Torres-Piedra, G. Navarrete-Vázquez, Relaxant activity of 2-
(substituted phenyl)-1H-benzimidazoles on isolated rat aortic rings: design
and synthesis of 5-nitro derivatives, Life Sci. 79 (2006) 430–435.
[7] Ö.Ö. Guven, T. Erdoꢀgan, H. Göker, S. Yildiz, Synthesis and antimicrobial activity
of some novel phenyl and benzimidazole substituted benzyl ethers, Bioorg.
Med. Chem. Lett. 17 (2007) 2233–2236.
[8] Z. Ates-Alagoz, S. Yildiz, E. Buyukbingol, Antimicrobial activities of some
tetrahydronaphthalene-benzimidazole derivatives, Chemotherapy 53 (2007)
110–113.
[9] B.G. Mohamed, A.A. Abdel-Alim, M.A. Hussein, Synthesis of 1-acyl-2-alkylthio-
1,2,4-triazolobenzimidazoles with antifungal, anti-inflammatory and analgesic
effects, Acta Pharm. 56 (2006) 31–48.
[10] H.Y. Liu, H. Wu, J. Yang, Y.Y. Liu, B. Liu, Y.Y. Liu, J.F. Ma, pH-Dependent assembly
of 1D to 3D octamolybdate hybrid materials based on a new flexible bis-
[(pyridyl)-benzimidazole] ligand, Cryst. Growth Des. 11 (2011) 2920–2927.
[11] M.S. Diaz-Cruz, J. Mendieta, A. Monjonelli, R. Tauler, M. Esteban, Specific
interactions of bovine and human b-casomorphin-7 with Cu(II) ions, J. Inorg.
Biochem. 70 (1998) 91–95.
Fig. 5. The inhibitory effect of Ni(II) complex on OH radicals; the suppression ratio
increases with increasing concentration of the test compound.
[12] K.E. Erkkila, D.T. Odom, J.K. Barton, Recognition and reaction of
metallointercalators with DNA, Chem. Rev. 99 (1999) 2777–2796.
[13] L.N. Ji, X.H. Zou, J.G. Lin, Shape- and enantioselective interaction of Ru(II)/
Co(III) polypyridyl complexes with DNA, Coord. Chem. Rev. 216–217 (2001)
513–536.
[14] B.M. Zeglis, V.C. Pierre, J.K. Barton, Metallo-intercalators and metallo-insertors,
Chem. Commun. 44 (2007) 4565–4579.
[15] J.A. Cowan, Metal activation of enzymes in nucleic acid biochemistry, Chem.
Rev. 98 (1998) 1067–1088.
[16] C.L. Liu, M. Wang, T.L. Zhang, H.Z. Sun, DNA hydrolysis promoted by di- and
multi-nuclear metal complexes, Coord. Chem. Rev. 248 (2004) 147–168.
[17] H.L. Wu, X.C. Huang, J.K. Yuan, F. Kou, F. Jia, B. Liu, K.T. Wang, A V-shaped
ligand 2,6-bis(2-benzimidazolyl)pyridine and its picrate Mn(II) complex:
Synthesis, crystal structure and DNA-binding properties, Eur. J. Med. Chem.
45 (2010) 5324–5330.
[18] H.L. Wu, K. Li, T. Sun, F. Kou, F. Jia, J.K. Yuan, B. Liu, B.L. Qi, Synthesis, structure,
and DNA-binding properties of manganese(II) and zinc(II) complexes with
tris(N-methylbenzimidazol-2-ylmethyl)amine ligand, Transition. Met. Chem.
36 (2011) 21–28.
4. Conclusion
In this work, a new ligand bis(N-allylbenzimidazol-2-ylmethyl)-
benzylamine and its Ni(II) complex have been synthesized and
characterized. The crystal structure of [Ni(babb)2](pic)2 is six-coor-
dinated adopting a distorted octahedral geometry. The DNA-binding
experimental results suggest that ligand babb and Ni(II) complex
bind to DNA in an intercalation mode, and the Ni(II) complex has
higher binding ability than free ligand. In addition, the Ni(II) com-
plex can be considered as a potential drug to eliminate the hydroxyl
radical. These findings indicate that the Ni(II) complex has many
potential practical applications for the development of nucleic acid
molecular probes and new therapeutic reagents for diseases on the
molecular level and warrant further in vivo experiments and
pharmacological assays.
[19] H.L. Wu, R.R. Yun, K.T. Wang, K. Li, X.C. Huang, T. Sun, Synthesis, crystal
structure, and spectrum properties of cobalt(II) complexes based on tridentate
1, 3-bis(benzimidazol-2-yl)-2-oxopropane ligand and derivative, Z. Anorg.
Allg. Chem. 636 (2010) 629–633.
[20] H.L. Wu, X.C. Huang, J.K. Yuan, K. Li, J. Ding, R.R. Yun, W.K. Dong, X.Y. Fan, A
Acknowledgments
five-coordinate
copper(II)
perchlorate
complex
with
tris(N-
methylbenzimidazol-2-ylmethyl)amine and salicylate, J. Coord. Chem. 62
(2009) 3446–3453.
The authors acknowledge the financial support and grant from
‘Qing Lan’ Talent Engineering Funds by Lanzhou Jiaotong University.
The grant from ‘Long Yuan Qing Nian’ of Gansu Province also is
acknowledged.
[21] H.L. Wu, J.K. Yuan, Y. Bai, F. Kou, F. Jia, B. Liu, Synthesis crystal structure and
spectra properties of the cadmium (II) complex with bis(N-allylbenzimidazol-
2-ylmethyl)benzylamine, Bioinorg. Chem. Appl. 2011 (2011) 705989.
[22] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Tris(phenanthroline)-
ruthenium(II) enantiomer interactions with DNA: mode and specificity of
binding, Biochemistry 32 (1993) 2573–2584.
[23] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, A further examination of the
molecular weight and size of desoxypentose nucleic acid, J. Am. Chem. Soc. 76
(1954) 3047–3051.
[24] K. Takahashi, Y. Nishida, S. Kida, Crystal structure of copper(II) complex with N,
N-bis(2-benzimidazolylmethyl)benzylamine, Polyhedron 3 (1984) 113–116.
[25] Bruker, Smart saint and sadabs, Bruker Axs, Inc., Madison, WI, 2000.
[26] G.M. Sheldrick, SHELXTL, Siemens Analytical X-ray Instruments, Inc., Madison,
Wisconsin, USA, 1996.
[27] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton,
Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA, J.
Am. Chem. Soc. 111 (1989) 3051–3058.
[28] A. Wolf, G.H. Shimer, T. Meehan, Polycyclic aromatic hydrocarbons physically
intercalate into duplex regions of denatured DNA, Biochemistry 26 (1987)
6392–6396.
[29] B.C. Baguley, M.L. Bret, Quenching of DNA-ethidium fluorescence by amsacrine
and other antitumor agents: a possible electron-transfer effect, Biochemistry
23 (1984) 937–943.
[30] J.R. Lakowicz, G. Webber, Quenching of fluorescence by oxygen Probe for
structural fluctuations in macromolecules, Biochemistry 12 (1973) 4161–
4170.
Appendix A. Supplementary material
Crystallographic data (excluding structure factors) for the struc-
tures reported in this paper have been deposited with the
Cambridge Crystallographic Data Center with reference number
CCDC 848157. Copies of the data can be obtained, free of charge,
on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK. Tel.: +44 01223 762910; fax: +44 01223 336033; e-mail: de-
tary data associated with this article can be found, in the online
References
[1] J.B. Wright, The chemistry of the benzimidazoles, Chem. Rev. 48 (1951) 397–
541.
[2] S.Y. Hong, K.W. Kwak, C.K. Ryu, S.J. Kang, K.H. Chung, Antiproliferative effects
of 6-anilino-5-chloro-1H-benzo[d]imidazole-4,7-dione in vascular smooth
muscle cells, Bioorg. Med. Chem. 16 (2008) 644–649.
[31] C.P. Tan, J. Liu, L.M. Chen, S. Shi, L.N. Ji, Synthesis, structural characteristics,
DNA binding properties and cytotoxicity studies of
complexes, J. Inorg. Biochem. 102 (2008) 1644–1653.
a series of Ru(III)
[32] C.C. Winterbourn, Hydroxyl radical production in body fluids. Roles of metal
ions, ascorbate and superoxide, Biochem. J. 198 (1981) 125–131.
[3] J.Y. Xu, Y. Zeng, Q. Ran, Z. Wei, Y. Bi, Q.H. He, Q.J. Wang, S. Hu, J. Zhang, M.Y.
Tang, W.Y. Hua, X.M. Wu, Synthesis and biological activity of 2-