E
A. N. Dinh et al.
Cluster
Synlett
When we generated these conformations for the com-
putational CD studies, we observed striking differences in
their predicted energies (Scheme 4). For example, the (Sa)-
endo-conformation of 2a is predicted to be significantly
more stable than the (Sa)-exo-conformation. Interestingly,
we observed the opposite trend for the starting material 1a,
with the exo-conformation being the more stable (see SI for
more details).
To investigate this further, we generated contour energy
maps of the rotational landscape about both axes of the di-
aryl ether (Scheme 4). In a manner consistent with results
from Clayden and co-workers,23 these maps demonstrate
that there is a low-energy pathway for interconversion be-
tween the exo- and endo-conformations of a given enantio-
mer that proceeds through a concerted gearing mechanism.
It is therefore likely that the exo-conformation of the start-
ing material is more stable and is likely to be the conforma-
tion that interacts with the catalyst. However, addition of
the methyl leads to an immediate conformational gear shift
to the endo-enantiomer.
Our working model for stereoinduction is shown in the
proposed transition state shown in Scheme 3, in which we
propose that the urea moiety of the catalyst forms a hydro-
gen bond with both the ether oxygen and one of the qui-
none carbonyls of the lower-energy exo-diaryl ether con-
formation. From here, the diaryl ether is preorganized into
the (Sa)-atropisomer to avoid steric interactions between
the tert-butyl group and the quinuclidinium that would be
present in the (Ra) atropisomer/catalyst complex. We pos-
tulate that the hydrogen bonding activates the diaryl ether
toward nucleophilic attack by the nitronate anion and that
the molecule subsequently undergoes HNO2 elimination
followed by tautomerism to give the alkylated quinone, or
subsequent attack by nitronate followed by oxidation to
give the nitroethylated byproduct. At this point, it is likely
that both products will rapidly relax to the endo-conforma-
tion, perhaps providing a release mechanism from the cata-
lyst.
In conclusion, we have disclosed the first example of a
small molecule catalytic synthesis of diaryl ethers.
Although our selectivities were moderate to good, highly
enantioenriched ethers can be accessed through trituration.
We also discuss several mechanistic aspects of this work.
We hope that these studies will serve as a starting point for
future efforts towards the enantioselective syntheses of di-
aryl ethers and related atropisomers.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
References and Notes
(1) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.;
Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384.
(2) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem.
Rev. 2015, 115, 11239.
(3) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32,
1562.
(4) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew.
Chem. Int. Ed. 2009, 48, 6398.
(5) Clayden, J. Chem. Commun. 2004, 127.
(6) Ōki, M. Top. Stereochem. 1983, 14, 1.
(7) Smith, D. E.; Marquez, I.; Lokensgard, M. E.; Rheingold, A. L.;
Hecht, D. A.; Gustafson, J. L. Angew. Chem. Int. Ed. 2015, 54,
11754.
(8) Barrett, K. T.; Miller, S. J. Org. Lett. 2015, 17, 580.
(9) Barrett, K. T.; Miller, S. J. J. Am. Chem. Soc. 2013, 135, 2963.
(10) Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.
(11) Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J. J. Am. Chem.
Soc. 2015, 137, 12369.
(12) Clayden, J.; Lai, L. W.; Helliwell, M. Tetrahedron 2004, 60, 4399.
(13) Cardenas, M. M.; Toenjes, S. T.; Nalbandian, C. J.; Gustafson, J. L.
Org. Lett. 2018, 20, 2037.
(14) Toenjes, S. T.; Gustafson, J. L. Future Med. Chem. 2018, 10, 409.
(15) Nalbandian, C. J.; Hecht, D. E.; Gustafson, J. L. Synlett 2016, 27,
977.
(16) Watterson, S. H.; De Lucca, G. V.; Shi, Q.; Langevine, C. M.; Liu,
Q.; Batt, D. G.; Beaudoin Bertrand, M.; Gong, H.; Dai, J.; Yip, S.;
Li, P.; Sun, D.; Wu, D.-R.; Wang, C.; Zhang, Y.; Traeger, S. C.;
Pattoli, M. A.; Skala, S.; Cheng, L.; Obermeier, M. T.; Vickery, R.;
Discenza, L. N.; D’Arienzo, C. J.; Zhang, Y.; Heimrich, E.; Gillooly,
K. M.; Taylor, T. L.; Pulicicchio, C.; McIntyre, K. W.; Galella, M. A.;
Tebben, A. J.; Muckelbauer, J. K.; Chang, C.-Y.; Rampulla, R.;
Mathur, A.; Salter-Cid, L.; Barrish, J. C.; Carter, P. H.; Fura, A.;
Burke, J. R.; Tino, J. A. J. Med. Chem. 2016, 59, 9173.
(17) Chen, Y.-H.; Cheng, D.-J.; Zhang, J.; Wang, Y.; Liu, X.-Y.; Tan, B.
J. Am. Chem. Soc. 2015, 137, 15062.
(18) Chen, Y.-H.; Qi, L.-W.; Fang, F.; Tan, B. Angew. Chem. Int. Ed.
2017, 56, 16308.
(19) Jolliffe, J. D.; Armstrong, R. J.; Smith, M. D. Nat. Chem. 2017, 9,
558.
(20) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.;
Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem.
2011, 54, 7005.
(21) Nicolaou, K. C.; Boddy, C. N. C. J. Am. Chem. Soc. 2002, 124,
10451.
(22) Clayden, J.; Kubinski, P. M.; Sammiceli, F.; Helliwell, M.;
Diorazio, L. Tetrahedron 2004, 60, 4387.
(23) Betson, M. S.; Clayden, J.; Worrall, C. P.; Peace, S. Angew. Chem.
Int. Ed. 2006, 45, 5803.
(24) Clayden, J.; Worrall, C. P.; Moran, W. J.; Helliwell, M. Angew.
Chem. Int. Ed. 2008, 47, 3234.
(25) Yuan, B.; Page, A.; Worrall, C. P.; Escalettes, F.; Willies, S. C.;
McDouall, J. J. W.; Turner, N. J.; Clayden, J. Angew. Chem. Int. Ed.
2010, 49, 7010.
Funding Information
This work was supported by a grant from NIGMS (1R35GM124637).
A.N.D. and S.T.T. were supported by the SDSU University Graduate Fel-
lowship. A.C.J. is grateful for support from the NIH-funded Initiative
for Maximizing Student Development (IMSD) (5R25GMO58906).
N
oaitn
a
l
n
Itsu
i
te
of
G
e
n
e
arl
M
e
dcai
l
Secinces
1(
R
3
5
G
M
1
2
4
6
3
7)
(26) Staniland, S.; Adams, R. W.; McDouall, J. J. W.; Maffucci, I.;
Contini, A.; Grainger, D. M.; Turner, N. J.; Clayden, J. Angew.
Chem. Int. Ed. 2016, 55, 10755.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–F