10.1002/anie.201709809
Angewandte Chemie International Edition
COMMUNICATION
3) The key properties of the redox-active guanidine, its redox
potential and its basicity, can easily be tuned, as demonstrated
by previous work by our group.[13,24]
[15]
[16]
[17]
A. Rieker, W. Rundel, H. Kessler, Z. Naturforschg. 1969, 24b, 547–
562.
K. V. N. Esguerra, Y. Fall, L. Petitjean, J.-P. Lumb, J. Am. Chem.
Soc. 2014, 136, 7662–7668.
We are currently systematically studying the scope of catalytic
oxidation reactions with O2 using redox-active guanidine
catalysts.
M. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem.
2010, 122, 6583–6587; Angew. Chem. Int. Ed. 2010, 49, 6438–
6442.
[18]
[19]
J. N. Hamann, F. Tuczek, Chem. Commun. 2014, 50, 2298–2300.
L. Casella, M. Gullotti, R. Radaelli, P. Di Gennaro, J. Chem. Soc.
Chem. Commun. 1991, 1611–1612.
Acknowledgements
The authors gratefully acknowledge financial support by the
Deutsche Forschungsgemeinschaft (DFG).
[20]
[21]
[22]
[23]
[24]
M. Rolff, J. Schottenheim, H. Decker, F. Tuczek, Chem. Soc. Rev.
2011, 40, 4077–4098.
E. Solem, F. Tuczek, H. Decker, Angew. Chem. 2016, 128, 2934–
2938; Angew. Chem. Int. Ed. 2016, 55, 2884–2888.
D. R. Armstrong, C. Cameron, D. C. Nonhebel, P. G. Perkins, J.
Chem. Soc., Perkin Trans. 2 1983, 587–589.
Keywords: oxidation • organocatalysis • guanidines • proton-
coupled electron transfer • dioxygen
T. Osako, K. Ohkubo, M. Taki, Y. Tachi, S. Fukuzumi, S. Itoh, J.
Am. Chem. Soc. 2003, 125, 11027–11033.
B. Eberle, E. Kaifer, H.-J. Himmel, Angew. Chem. 2017, 129,
3408–3412; Angew. Chem. Int. Ed. 2017, 56, 3360–3363.
[1]
[2]
a) J. Piera, J.-E. Bäckvall, Angew. Chem. 2008, 120, 3558–3576;
Angew. Chem. Int. Ed. 2008, 47, 3506–3523; b) D. Ventura-
Espinosa, J. A. Mata, Eur. J. Inorg. Chem. 2016, 17, 2667–2675.
a) G.-Z. Wang, U. Andreasson, J.-E. Bäckvall, J. Chem. Soc.,
Chem. Commun. 1994, 1037–1038; b) G. Csjernyik, A. H. Éll, L.
Fadini, B. Pugin, J.-E. Bäckvall, J. Org. Chem. 2002, 67, 1657–
1662; c) J. S. M. Samec, A. H. Éll, J.-E. Bäckvall, Chem. Eur. J.
2005, 11, 2327–2334; d) Y. Endo, J.-E. Bäckvall, Chem. Eur. J.
2011, 17, 12596–12601; e) B. P. Babu, Y. Endo, J.-E. Bäckvall,
Chem. Eur. J. 2012, 18, 11524–11527. f) Y. Endo, J.-E. Bäckvall,
Chem. Eur. J. 2012, 18, 13609–13613.
[3]
a) K. Selmeczi, M. Réglier, M. Giorgi, G. Speier, Coord. Chem.
Rev. 2003, 245, 191–201; b) L. I. Simándi, T. M. Simándi, Z. May,
G. Besenyei, Coord. Chem. Rev. 2003, 245, 85–93.
L. I. Simándi, T. Barna, G. Argay, T. L. Simándi, Inorg. Chem.
1995, 34, 6337–6340.
[4]
[5]
F. Wendt, C. Näther, F. Tuczek, J. Biol. Inorg. Chem. 2016, 21,
777–792.
[6]
S. Tsuruya, S.-i. Yanai, M. Masai, Inorg. Chem. 1986, 25, 141–
146.
[7]
C. W. Anson, S. Ghosh, S. Hammes-Schiffer, S. S. Stahl, J. Am.
Chem. Soc. 2016, 138, 4186–4193.
[8]
M. T. Huynh, C. W. Anson, A. C. Cavell, S. S. Stahl, S. Hammes-
Schiffer, J. Am. Chem. Soc. 2016, 138, 15903–15910.
Y. Ohshiro, S. Itoh, K. Kurokawa, J. Kato, T. Hirao, T. Agawa,
Tetrahedron Lett. 1983, 24, 3465–3468.
[9]
[10]
[11]
Y. Qin, L. Zhang, J. Lv, S. Luo, J.-P. Cheng, Org. Lett. 2015, 17,
1469–1472.
a) T. Hirao, M. Higuchi, I. Ikeda, Y. Ohshiro, J. Chem. Soc., Chem.
Commun. 1993, 194–195; b) M. Higuchi, I. Ikeda, T. Hirao, J. Org.
Chem. 1997, 62, 1072–1078; c) T. Hirao, S. Fukuhara, J. Org.
Chem. 1998, 63, 7534–7535; d) D. Saio, T. Amaya, T. Hirao, Adv.
Synth. Catal. 2010, 352, 2177–2182.
[12]
[13]
[14]
A. Peters, E. Kaifer, H.-J. Himmel, Eur. J. Org. Chem. 2008, 5907–
5914.
B. Eberle, O. Hübner, A. Ziesak, E. Kaifer, H.-J. Himmel, Chem.
Eur. J. 2015, 21, 8578–8590.
U. Wild, S. Federle, A. Wagner, E. Kaifer, H.-J. Himmel, Chem.
Eur. J. 2016, 22, 11971–11976.
This article is protected by copyright. All rights reserved.