Advanced Synthesis & Catalysis
10.1002/adsc.202000718
All DFT calculations were carried out at SMD(toluene)-
B3LYP-D3(BJ)/def2-TZVPP//B3LYP-D3(BJ)/6-31G*-
Ed. 2008, 47, 1312-1316; c) T. Suda, K. Noguchi, K.
Tanaka, Angew. Chem. Int. Ed. 2011, 50, 4475-4479.
[5] γ-enone was obtained in one case in ref 3f for
carbocycle synthesis in 57% yield, and no
diastereoselective version was examined.
[6] Recent reviews: a) S. Krautwald, E. M. Carreira, J. Am.
Chem. Soc. 2017, 139, 5627-5639; b) L. Lin, X. Feng,
Chem. Eur. J. 2017, 23, 6464-6482; c) I. P. Beletskaya,
C. Nájera, M. Yus, Chem. Rev. 2018, 118, 5080–5200;
d) C. Nájera, F. Foubelo, J. M. Sansano, M. Yus, Org.
Biomol. Chem. 2020, 18, 1279-1336; Recent examples:
d) S. Singha, E. Serrano, S. Mondal, C. G. Daniliuc, F.
Glorius, Nat. Cat. 2020, 3, 48-54; e) X. Wu, Z. Chen,
Y.-B. Bai, V. M. Dong, J. Am. Chem. Soc. 2016, 138,
12013-12016; f) organocatalysis: M. Bihani, J. C. G.
Zhao, Adv. Synth. Catal. 2017, 359, 534-575.
[18]
SDD(Ni) level of theory
using the Gaussian 16 program
[
21]
[19a]
package, and hybridization
was analyzed with NBO
[
19b]
7
.0 program
(see SI for details).
X-Ray Crystallographic Data: CCDC-1972921 (3ga),
972922 (3fa), 1972925 (3ua), 1972924 (3ra), and
1
1
972923 (3xa) contain the supplementary crystallographic
data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
Acknowledgements
CYH thanks Shenzhen Nobel Prize Scientists Laboratory Project
(
C17783101), SZ research fund (JCYJ 20170817105041557),
Guangdong Provincial Key Laboratory of Catalysis
2020B121201002), and SUSTech (50/Y01506014). ENWH
(
[
7] a) C. Y. Ho, L. S. He, Angew. Chem. Int. Ed. 2010, 49,
9182-9186; b) C. Y. Ho, L. He, J. Org. Chem. 2014, 79,
1873-11884; c) C. Y. Ho, C. W. Chan, L. S. He,
thanks Prof Pauline Chiu for financial support and the
Information Technology Service of the University of Hong Kong
for the use of their computing facilities.
1
Angew. Chem. Int. Ed. 2015, 54, 4512-4516; d) X. Y.
Lian, W. H. Chen, L. Dang, Y. C. Li, C. Y. Ho, Angew.
Chem. Int. Ed. 2017, 56, 9048-9052; e) W. Chen, Y. Li,
Y. Chen, C.-Y. Ho, Angew. Chem. Int. Ed. 2018, 57,
References
[1] a) K. C. Majumdar, S. K. Chattopadhyay, Heterocycles
2677-2681. f) J.-Q. Huang, C. Y. Ho, Angew. Chem. Int.
in natural product synthesis, Wiley-VCH Verlag,
Weinheim, 2011; b) R. V. A. Orru, E. Ruijter, Synthesis
of heterocycles via multicomponent reactions, Springer,
Heidelberg, 2010.
Ed. 2020, 59, 5288-5292; g) Y. Chen, L. Dang, C. Y.
Ho, Nat. Commun. 2020, 11, 2269.
[
8] X. Yong, W. Gao, X. Lin, C.-Y. Ho, Commun. Chem.
020, 3, 50.
9] Unexpectedly, the use of highly electron-deficient
2
[
2] a) C. Aubert, O. Buisine, M. Malacria, Chem. Rev.
[
2
002, 102, 813-834; b) A. Thakur, J. Louie, Acc. Chem.
aldehyde (4-CF3-benzaldehyde) suppressed the reaction,
and over 90% enyne was recovered.
Res. 2015, 48, 2354-2365; c) G. Domínguez, J. Pérez-
Castells, Chem. Soc. Rev. 2011, 40, 3430-3444; d) D. B.
Huple, R.-S. Liu, Chem. Commun. 2012, 48, 10975-
[
10] a) D. L. J. Broere, E. Ruijter, Synthesis 2012, 44,
639-2672; b) F. Xue, Y. K. Loh, X. Song, W. J. Teo, J.
Y. D. Chua, J. Zhao, T. S. A. Hor, Chem. Asian J. 2017,
2, 168-173.
11] a) S. Ogoshi, Y. Hoshimoto, M. Ohashi, Chem.
2
10977; e) A. Pla-Quintana, A. Roglans, Asian J. Org.
Chem. 2018, 7, 1706-1718; f) E. P. Jackson, H. A.
Malik, G. J. Sormunen, R. D. Baxter, P. Liu, H. Wang,
A.-R. Shareef, J. Montgomery, Acc. Chem. Res. 2015,
1
[
Commun. 2010, 46, 3354-3356; b) Y. Hoshimoto, M.
Ohashi, S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 4668-
4
8, 1736-1745; g) S. Z. Tasker, E. A. Standley, T. F.
Jamison, Nature 2014, 509, 299-309.
4
671.
12] J.-P. Zhao, S.-C. Chan, C.-Y. Ho, Tetrahedron 2015,
1, 4426-4431.
13] a) L.-J. Xiao, X.-N. Fu, M.-J. Zhou, J.-H. Xie, L.-X.
Wang, X.-F. Xu, Q.-L. Zhou, J. Am. Chem. Soc. 2016,
38, 2957-2960; b) Y. Hoshimoto, Y. Hayashi, H.
Suzuki, M. Ohashi, S. Ogoshi, Angew. Chem. Int. Ed.
012, 51, 10812-10815.
14] Solvent effects were also examined by employing
[
3] a) C. Copéret, E.-i. Negishi, Z. Xi, T. Takahashi,
Tetrahedron Lett. 1994, 35, 695-698; b) H. Urabe, F.
Sato, J. Org. Chem. 1996, 61, 6756-6757; c) H. Urabe,
F. Sato, J. Am. Chem. Soc. 1999, 121, 1245-1255; d) C.
Zhao, T. Yu, Z. Xi, Chem. Commun. 2002, 142-143; e)
T. N. Tekevac, J. Louie, Org. Lett. 2005, 7, 4037-4039;
f) T. N. Tekavec, J. Louie, J. Org. Chem. 2008, 73,
[
7
[
1
2
2641-2648; g) Y. Oonishi, Y. Kitano, Y. Sato,
[
Tetrahedron 2013, 69, 7713-7718; h) Y. Oonishi, T.
Yokoe, A. Hosotani, Y. Sato, Angew. Chem. Int. Ed.
ether and MTBE. The yields were lower, but a similar
diastereodivergent efficiency was observed, suggesting
that it was unlike the result observed when Z
coordination ability to the NHC-Ni center was altered.
See SI for details.
2
014, 53, 1135-1139; i) N. Topolovčan, I. Panov, M.
Kotora, Eur. J. Org. Chem. 2015, 2015, 2868-2878; j)
R. Santhoshkumar, S. Mannathan, C.-H. Cheng, J. Am.
Chem. Soc. 2015, 137, 16116-16120; k) L. Lv, Z. Li,
Org. Lett. 2016, 18, 2264-2267; l) K. Ikeda, T.
Morimoto, T. Tsumagari, H. Tanimoto, Y. Nishiyama,
K. Kakiuchi, Synlett 2012, 2012, 393-396; m) K. Ikeda,
T. Morimoto, K. Kakiuchi, J. Org. Chem. 2010, 75,
[
15] A large number of low energy conformations were
located, and the lowest energy ones place the alkene
and alkyne moieties far apart from each other. See SI
for more details.
[
16] a) R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-
860; b) T. C. Coombs, G. H. Lushington, J. Douglas, J.
Aubé, Angew. Chem. Int. Ed. 2011, 50, 2734-2737.
6279-6282; n) H. Faustino, I. Varela, J. L. Mascarenas,
1
F. Lopez, Chem. Sci. 2015, 6, 2903-2908.
[
4]a) M. Ishida, Y. Shibata, K. Noguchi, K. Tanaka, Chem.
Eur. J. 2011, 17, 12578-12581; b) K. Tanaka, Y. Otake,
H. Sagae, K. Noguchi, M. Hirano, Angew. Chem. Int.
[
17] To reduce computational cost, the diisopropylbenzene
groups on IPr were simplified to Me, and this is
justified by the fact that the switch in
7
This article is protected by copyright. All rights reserved.