Page 7 of 8
Journal of the American Chemical Society
hydes: the Challenge of Facing the Construction of a Quaternary Fluor-
by NBO strongly suggests that these attractive, non-covalent in-
teractions contribute to the distortion from a tetrahedral geom-
etry that leads to asymmetric induction.
inated Stereocenter. Eur. J. Org. Chem. 2016, 3223. (f) Cosimi, E.;
Engl, O. D.; Saadi, J.; Ebert, M. O.; Wennemers, H. Stereoselective
Organocatalyzed Synthesis of α-Fluorinated β-Amino Thioesters and
Their Application in Peptide Synthesis. Angew. Chem., Int. Ed. 2016,
55, 13127. (g) Cosimi, E.; Saadi, J.; Wennemers, H. Stereoselective
Synthesis of α-Fluoro-γ-nitro Thioesters under Organocatalytic Condi-
tions. Org. Lett. 2016, 18, 6014.
1
2
3
4
ASSOCIATED CONTENT
Supporting Information. This material is available free of charge
5
6
7
8
9
Experimental details and procedures, spectra for all unknown com-
pounds (PDF)
Crystal structure for ent-3m (CCDC: 1907850). (CIF)
Crystal structure for ent-7g (CCDC: 1907851). (CIF)
(4) For recent reviews, see (a) Shockley, S. E.; Hethcox, J. C.; Stoltz,
B. M. Intermolecular Stereoselective Iridium-Catalyzed Allylic Alkyl-
ation: An Evolutionary Account. Synlett 2018, 29, 2481. (b) Cheng, Q.;
Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Cat-
alyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019,
119, 1855.
(5) (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M.
Enantio- and Diastereodivergent Dual Catalysis: α-Allylation of
Branched Aldehydes. Science 2013, 340, 1065. (b) Krautwald, S.;
Schafroth, M. A.; Sarlah, D.; Carreira, E. M. Stereodivergent α-Allyla-
tion of Linear Aldehydes with Dual Iridium and Amine Catalysis. J.
Am. Chem. Soc. 2014, 136, 3020. (c) Sandmeier, T.; Krautwald, S.;
Zipfel, H. F.; Carreira, E. M. Stereodivergent Dual Catalytic α-Allyla-
tion of Protected α-Amino- and α-Hydroxyacetaldehydes. Angew.
Chem. Int. Ed. 2015, 54, 14363.
(6) Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgen-
sen, K. A. Asymmetric γ-Allylation of α,β-Unsaturated Aldehydes by
Combined Organocatalysis and Transition-Metal Catalysis. Angew.
Chem. Int. Ed. 2015, 54, 10193.
(7) (a) Huo, X.; He, R.; Zhang, X.; Zhang, W. An Ir/Zn Dual Catal-
ysis for Enantio- and Diastereodivergent α-Allylation of α-Hy-
droxyketones. J. Am. Chem. Soc. 2016, 138, 11093. (b) He, R.; Liu, P.;
Huo, X.; Zhang, W. Ir/Zn Dual Catalysis: Enantioselective and Dia-
stereodivergent α-Allylation of Unprotected α-Hydroxy Indanones.
Org. Lett. 2017, 19, 5513. (c) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang,
W. Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to
α,α- Disubstituted α-Amino Acids Bearing Vicinal Stereocenters. J.
Am. Chem. Soc. 2018, 140, 2080.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
*jhartwig@berkeley.edu
ORCID
John F. Hartwig: 0000-0002-4157-468X
Present Addresses
‡Department of Discovery, Pharmacyclics Inc., Sunnyvale, CA
94085
Author Contributions
†
Z.-T. H. and X. J. contributed equally.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank the NIH 1R35GM130387 for support of this work. Dr.
Nicholas Settineri is acknowledged for X-ray crystallographic anal-
ysis.
(8) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. Stereodi-
vergent Synthesis of α,α-Disubstituted α-Amino Acids via Synergistic
Cu/Ir Catalysis. J. Am. Chem. Soc. 2018, 140, 1508.
(9) (a) Jiang, X.; Beiger, J. J.; Hartwig, J. F. Stereodivergent Allylic
Substitutions with Aryl Acetic Acid Esters by Synergistic Iridium and
Lewis Base Catalysis. J. Am. Chem. Soc. 2017, 139, 87. (b) Jiang, X.;
Boehm, P.; Hartwig, J. F. Stereodivergent Allylation of Azaaryl Acet-
amides and Acetates by Synergistic Iridium and Copper Catalysis. J.
Am. Chem. Soc. 2018, 140, 1239.
REFERENCES
(1) For reviews, see (a) Cahard, D.; Xu, X.; Couve-Bonnaire, C.;
Pannecoucke, X. Fluorine & Chirality: How to Create a Nonracemic
Stereogenic Carbon–Fluorine center? Chem. Soc. Rev. 2010, 39, 558.
(b) Lectard, S.; Hamashima, Y.; Sodeoka, M. Recent Advances in Cat-
alytic Enantioselective Fluorination Reactions. Adv. Synth. Catal.
2010, 352, 2708. (c) Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka,
M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Modern Ap-
proaches for Asymmetric Construction of Carbon−Fluorine Quaternary
Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs.
Chem. Rev. 2018, 118, 3887.
(2) It is a known fact that stereochemistry might heavily affect the
corresponding biological activity. Please see (a) Caldwell, J. The Im-
portance of Stereochemistry in Drug Action and Disposition. J Clin
Pharmacol, 1992, 32, 925. (b) Rentsch, K. M. The Importance of Ste-
reoselective Determination of Drugs in the Clinical Laboratory. J. Bio-
chem. Biophys. Methods, 2002, 54, 1.
(3) For selected examples, see (a) Wang, L.; Meng, W.; Zhu, C.-L.;
Zheng, Y.; Nie, J.; Ma, J.-A. The Long-Arm Effect: Influence of Axi-
ally Chiral Phosphoramidite Ligands on the Diastereo- and Enantiose-
lectivity of the Tandem 1,4-Addition/Fluorination. Angew. Chem., Int.
Ed. 2011, 50, 9442. (b) Honjo, T.; Phipps, R. J.; Rauniyar, V.; Toste,
F. D. A Doubly Axially Chiral Phosphoric Acid Catalyst for the Asym-
metric Tandem Oxyfluorination of Enamides. Angew. Chem., Int. Ed.
2012, 51, 9684. (c) Yan, L.; Han, Z.; Zhu, B.; Yang, C.; Tan, C.-H.;
Jiang, Z. Asymmetric Allylic Alkylation of Morita−Baylis−Hillman
Carbonates with α-Fluoro-β-Keto Esters. Beilstein J. Org. Chem. 2013,
9, 1853. (d) Shang, H.; Li, Y.; Li, X.; Ren, X. Diastereoselective Addi-
tion of Metal α-Fluoroenolates of Carboxylate Esters to N-tert-Butyl-
sulfinyl Imines: Synthesis of α-Fluoro-β-amino Acids. J. Org. Chem.
2015, 80, 8739. (e) Emma, M. G.; Lombardo, M.; Trombini, C.; Quin-
tavalla, A. The Organocatalytic α-Fluorination of Chiral γ-Nitroalde-
(10) Jiao, Z.; Beiger, J. J.; Jin, Y.; Ge, S.; Zhou, J. S.; Hartwig, J. F.
Palladium-Catalyzed Enantioselective α-Arylation of α-Fluoroketones.
J. Am. Chem. Soc. 2016, 138, 15980.
(11) (a) Liu, W.-B.; Zheng, S.-C.; He, H.; Zhao, X.-M.; Dai, L.-X.;
You, S.-L. Iridium-Catalyzed Regio- and Enantioselective Allylic Al-
kylation of Fluorobis(phenylsulfonyl)methane. Chem. Commun. 2009,
6604. (b) Zhang, H.; Chen, J.; Zhao, X.-M. Enantioselective Synthesis
of Fluorinated Branched Allylic Compounds via Ir-Catalyzed Allyla-
tions of Functionalized Fluorinated Methylene Derivatives. Org. Bio-
mol. Chem. 2016, 14, 7183. (c) Chen, J.; Zhao, X.; Dan, W. Diaster-
oselective and Enantioselective Ir-Catalyzed Allylic Substitutions of
1-Substituted 1-Fluoro-1-(arenesulfonyl)methylene Derivatives. J.
Org. Chem. 2017, 82, 10693.
(12) mono-Fluoro substrate is more acidic than non-fluoro one.
Butin, K. P.; Kashin, A. N.; Beletskaya, I. P.; German, L. S.;
Polishchuk, V. R. Acidities of Some Fluorine Substituted C-H Acids.
J. Organomet. Chem. 1970, 25, 11.
(13) Cahard, D.; Bizet, V. The Influence of Fluorine in Asymmetric
Catalysis. Chem. Soc. Rev. 2014, 43, 135.
(14) Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M.
Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic
Catalysis Using Rh and Jacobsen’s Amine. J. Am. Chem. Soc. 2017,
139, 1029.
(15) When an iso-propyl group was the alkyl substituent on the nu-
cleophile, the allylic substitution reaction did not occur.
ACS Paragon Plus Environment