Page 7 of 8
Journal of the American Chemical Society
5. For biosynthesis study of β-hydroxyenduracididines: Haltli, B.; Tan, Y.;
20. A 1.1:1 ratio of 13 and 14 was obtained in 91% combined yield when
the AD-mix-β catalyst was used in the dihydroxylation step.
21. Protection of NH2 with Phth gave very low yield (<15%).
22. An unidentified side product with the same molecular weight of 22 was
also formed in 20% yield. However, its NMR spectra do not fully agree
with an ortho ester structure (see SI). Gold-catalyzed N-
mannosylation of compound 18 with 10 also worked well. However,
the attempted conversion of the resulting N-mannosylated intermedi-
ate to 21 was unsuccessful.
Magarvey, N. A.; Wagenaar, M.; Yin, X. H.; Greenstein, M.; Hucul, J.
1
2
3
4
5
6
7
8
A.; Zabriskie, T. M. Chem. Biol. 2005, 12, 1163.
1
6. For references on C4 conformation of mannose: (a) Lemieux, R. U.;
Morgan, A. R. Can. J. Chem. 1965, 43, 2205. (b) Onodera, K.; Hirano,
S.; Masuda, F.; Kashimura, N. J. Org. Chem. 1966, 31, 2403.
7. Breukink, E.; de Kruijff, B. Nat. Rev. Drug Discovery 2006, 5, 321.
8. (a) Ruzin, A.; Singh, G.; Severin, A.; Yang, Y.; Dushin, R. G.; Suther-
land, A. G.; Minnick, A.; Greenstein, M.; May, M. K.; Shlaes, D. M.;
Bradford, P. A. Antimicrob. Agents Chemother. 2004, 48, 728. (b)
Magarvey, N. A.; Haltli, B.; Greenstein, M.; Hucul, J. A. Antimicrob.
Agents Chemother. 2006, 50, 2167.
23. The conformation of 22 might affect the accessibility of the OAc group.
24. The procedures for converting 29 to 30 have been modified to obtain
more reliable yields. See SI for details.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9. For previous SAR studies based on bio- and semisynthesis: (a) Sum, P.
E.; How, D.; Torres, N.; Petersen, P. J.; Lenoy, E. B.; Weiss, W. J.;
Mansour, T. S. Bioorg. Med. Chem. Lett. 2003, 13, 1151. (b) Dushin, R.
J.; Wang, T.-Z.; Sum, P.-E.; He, H.; Sutherland, A. G.; Ashcroft, J. S.;
Graziani, E. I.; E., K. F.; Bradford, P. A.; Petersen, P. J.; Wheless, K. L.;
How, D.; Torres, N.; Lenoy, E. B.; Weiss, W. J.; Lang, S. A.; Projan, S. J.;
Shlaes, D. M.; Mansour, T. S. J. Med. Chem. 2004, 47, 3487. (c) Pe-
tersen, P. J.; Wang, T. Z.; Dushin, R. G.; Bradford, P. A. Antimicrob.
Agents Chemother. 2004, 48, 739. (d) He, H.; Shen, B.; Petersen, P. J.;
Weiss, W. J.; Yang, H. Y.; Wang, T.-Z.; Dushin, R. G.; Koehn, F. E.;
Carter, G. T. Bioorg. Med. Chem. Lett. 2004, 14, 279.
10. For previous syntheses of the O-linked di-mannose residue: (a) Babu,
R. S.; Guppi, S. R.; O’Doherty, G. A. Org. Lett. 2006, 8, 1605. (b)
Adinolfi, M.; Giacomini, D.; Iadonisi, A.; Quintavalla, A.; Valerio, S.
Eur. J. Org. Chem. 2008, 2895.
11. For previous syntheses of unglycosylated βhEnd units: (a) Schwörer, C.
J.; Oberthür, M. Eur. J. Org. Chem. 2009, 6129. (b) Olivier, K. S.; Van
Nieuwenhze, M. S. Org. Lett. 2010, 12, 1680. (c) Fischer, S. N.;
Schwörer, C. J.; Oberthür, M. Synthesis 2014, 46, 2234.
12. (a) Fuse, S.; Koinuma, H.; Kimbara, A.; Izumikawa, M.; Mifune, Y.; He,
H.; Shin-ya, K.; Takahashi, T.; Doi, T. J. Am. Chem. Soc. 2014, 136,
12011. (b) For a solid phase synthesis of a simplified MPP aglycone
substituted with L-, D-Arg and L-Phe residues: Wang, T.-Z.; Wheless,
K. L.; Sutherland, A. G.; Dushin, R. G. Heterocycles 2004, 62, 131.
13. For selected syntheses of N-glycosides: (a) Vorbrüggen, H. Acc. Chem.
Res. 1995, 28, 509. (b) Gallant, M.; Link, J. T.; Danishefsky, S. J. J. Org.
Chem. 1993, 58, 343. (c) Keynes, M. N.; Earle, M. A.; Sudharshan, M.;
Hultin, P. G. Tetrahedron 1996, 52, 8685.(d) Lin, P.; Lee, C. L.; Sim,
M. M. J. Org. Chem. 2001, 66, 8243. (e) Sugimura, H.; Natsui, Y. Tet-
rahedron Lett. 2003, 44, 4729. (f) Schnabel, M.; Rompp,
B.; Ruckdeschel, D.; Unverzagt, C. Tetrahedron Lett. 2004, 45, 295. (g)
Tanaka, H.; Iwata, Y.; Takahashi, D.; Adachi, M.; Takahashi, T. J. Am.
Chem. Soc. 2005, 127, 1630. (h) Ohno, H.; Terui, T.; Kitawaki, T.;
Chida, N. Tetrahedron Lett. 2006, 47, 5747. (i) Hager, D.; Mayer, P.;
Paulitz, C.; Tiebes, J.; Trauner, D. Angew. Chem., Int. Ed. 2012, 51,
6525.
25. Zhang, S.-Y.; Li, Q.; He, G. Nack, W. A.; Chen, G. J. Am. Chem. Soc.
2013, 135, 12135.
26. Han, Z.; Pinkner, J.; Ford, B.; Obermann, R.; Nolan, W.; Wildman, S.;
Hobbs, D.; Ellenberger, T.; Cusumano, C.; Hultgren, S.; Janetka, J. J.
Med. Chem. 2010, 53, 4779.
27. No NMR spectra of isolated MPPs were provided in the original struc-
1
tural determination paper (ref 3). Our H and 13C-NMR spectra of
both MPP α and β fully agree with the listed NMR data within an error
of 0.1 ppm for 1H-NMR and 0.2 ppm for 13C-NMR.
14. Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M. J.
Org. Chem. 1998, 63, 8432.
15. The low cyclization yield is caused by the competing elimination reac-
tion. For selected syntheses of cyclic guanidines: (a) DeMong, D. E.;
Williams, R. M. J. Am. Chem. Soc. 2003, 125, 8561. (b) Shimokawa, J.;
Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew. Chem., Int.
Ed. 2004, 43, 1559. (c) Ref 11.
16. The unique large coupling constant of H1’ at the anomeric position of
mannose in 2 (δ 5.86 ppm, d, J1’,2’ = 8.9 Hz, in CDCl3) agrees with the
proposed 1C4 conformation of N-linked α-mannose in MPPs.
17. (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604. (b) Zhu, Y.;
Yu, B. Angew. Chem., Int. Ed. 2011, 50, 8329. (c) Tang, Y.; Li, J.; Zhu,
Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.
18. (a) Liang, X.; Andersch, J.; Bols, M. J. Chem. Soc., Perkin Trans. 2001,
2136. (b) Ojima, I.; Vidal, E. J. Org. Chem. 1998, 63, 7999. (c) 11 was
also used as SM in ref 11b and 11c .
19. The corresponding Bn-protected analogues of 16, 19, and 22 (Scheme
2B) were also prepared using the same strategy for precursor 12. How-
ever, we found that a Bn protecting group at Cβ OH of these analogues
cannot be cleanly removed under catalytic hydrogenolysis conditions.
ACS Paragon Plus Environment