K. Ahlford, H. Adolfsson / Catalysis Communications 12 (2011) 1118–1121
1121
versus 18 h). Evidently, the reactions catalyzed by the hydroxamic
Appendix A. Supplementary data
acid derived complexes are more sensitive to substitution in the
ortho-position of the substrate aryl-ring, as compared to the
corresponding amide complexes. The selectivities are in general
higher using the iridium precursor than with its rhodium counterpart,
albeit for certain substrates higher selectivity was obtained using the
latter catalyst. The best selectivity obtained using the iridium catalyst
was in the reduction of 2-acetonaphthone (9) where the product was
formed in 90% ee (R). Using the rhodium-based catalyst we obtained
the same level of enantioselectivity (90%) in the reduction of (4′-
methyl)acetophenone (15).
From the presented results it is apparent that the amino acid
derived amides as well as hydroxamic acids are efficient ligands in the
ATH reaction in aqueous media. Interestingly, there is a strong
correlation between the amino acid side chain and the degree of
selectivity obtained with catalysts from the two different ligand
classes. Moreover, the selectivity-correlation is in agreement with the
results obtained employing the parent amino acids as ligands together
with [RhCp*Cl2]2 under similar reaction conditions. Hence, the use of
L-proline gives the best selectivity in the formation of 1-phenyletha-
nol (76% ee (R)), with L-valine a 50% ee (R) is obtained, and using L-
phenylalanine results in a merely 33% ee (R). It should be pointed out
that the conversion was substantially lower (around 20%, reactions
performed at ambient temperature) using the amino acid based
catalysts. The correlation is interesting from a fundamental perspec-
tive, since an initial ligand screen can be performed with non-
functionalized amino acids, rather than using more complex ligand
structures. Similar levels of selectivity should be expected from the
simpler catalyst systems, and these results can therefore act as a
guideline in further ligand developments.
Supplementary data to this article can be found online at
doi:10.1016/j.catcom.2011.03.032.
References
[1] V. Farina, J.T. Reeves, C.H. Senanayake, J.J. Song, Chem. Rev. 106 (2006) 2734.
[2] C. Wang, X. Wu, J. Xiao, Chem. Asian J. 3 (2008) 1750.
[3] S. Gladiali, E. Alberico, Chem. Soc. Rev. 35 (2006) 226.
[4] K. Everaere, A. Mortreux, J.-F. Carpentier, Adv. Synth. Catal. 345 (2003) 67.
[5] H.C. Maytum, J. Francos, D.J. Whatrup, J.M.J. Williams, Chem. Asian J. 5 (2010) 538.
[6] T. Zweifel, J.-V. Naubron, T. Buttner, T. Ott, H. Gruetzmacher, Angew. Chem. Int. Ed.
Engl. 47 (2008) 3245.
[7] S. Gladiali, R. Taras, in: P.G. Andersson, I.J. Munslow (Eds.), Modern Reduction
Methods, Wiley-VCH, Weinheim, 2008, pp. 135–157.
[8] X. Wu, C. Wang, J. Xiao, Platinum Metals Rev. 54 (2010) 3.
[9] R. Noyori, S. Hashiguchi, Acc. Chem. Res. 30 (1997) 97.
[10] K. Ahlford, J. Ekström, A.B. Zaitsev, P. Ryberg, L. Eriksson, H. Adolfsson, Chem. Eur.
J. 15 (2009) 11197.
[11] K. Ahlford, A.B. Zaitsev, J. Ekström, H. Adolfsson, Synlett (2007) 2541.
[12] W. Baratta, F. Benedetti, A. Del Zotto, L. Fanfoni, F. Felluga, S. Magnolia, E.
Putignano, P. Rigo, Organometallics 29 (2010) 3563.
[13] M.T. Reetz, X. Li, J. Am. Chem. Soc. 128 (2006) 1044.
[14] S.J. Nordin, P. Roth, T. Tarnai, D.A. Alonso, P. Brandt, P.G. Andersson, Chem. Eur. J. 7
(2001) 1431.
[15] D.S. Matharu, D.J. Morris, A.M. Kawamoto, G.J. Clarkson, M. Wills, Org. Lett. 7
(2005) 5489.
[16] L. Zani, L. Eriksson, H. Adolfsson, Eur. J. Org. Chem. (2008) 4655.
[17] A.B. Zaitsev, H. Adolfsson, Org. Lett. 8 (2006) 5129.
[18] A. Bøgevig, I.M. Pastor, H. Adolfsson, Chem. Eur. J. 10 (2004) 294.
[19] I.M. Pastor, P. Västilä, H. Adolfsson, Chem. Commun. (2002) 2046.
[20] J. Mao, J. Guo, Chirality 22 (2010) 173.
[21] B. Liégault, X. Tang, C. Bruneau, J.-L. Renaud, Eur. J. Org. Chem. (2008) 934.
[22] P. Pelagatti, A. Bacchi, F. Calbiani, M. Carcelli, L. Elviri, C. Pelizzi, D. Rogolino, J.
Organomet. Chem. 690 (2005) 4602.
[23] D. Carmona, F.J. Lahoz, R. Atencio, L.A. Oro, M.P. Lamata, F. Viguri, E. San José, C.
Vega, J. Reyes, F. Joó, Á. Kathó, Chem. Eur. J. 5 (1999) 1544.
[24] D. Carmona, M.P. Lamata, F. Viguri, I. Dobrinovich, F.J. Lahoz, L.A. Oro, Adv. Synth.
Catal. 344 (2002) 499.
4. Conclusion
[25] T. Ohta, S.-I. Nakahara, Y. Shigemura, K. Hattori, I. Furukawa, Appl. Organomet.
Chem. 15 (2001) 699.
[26] J.W. Faller, A.R. Lavoie, Organometallics 20 (2001) 5245.
[27] Z. Zhou, L. Wu, Catal. Commun. 9 (2008) 2539.
[28] S. Zeror, J. Collin, J.-C. Fiaud, L.A. Zouioueche, J. Mol. Catal. A Chem. 256 (2006) 85.
[29] H.Y. Rhyoo, H.-J. Park, W.H. Suh, Y.K. Chung, Tetrahedron Lett. 43 (2002) 269.
[30] H.Y. Rhyoo, H.-J. Park, Y.K. Chung, Chem. Commun. (2001) 2064.
[31] H.Y. Rhyoo, Y.-A. Yoon, H.-J. Park, Y.K. Chung, Tetrahedron Lett. 42 (2001) 5045.
[32] G. Giacomelli, A. Porcheddu, M. Salaris, Org. Lett. 5 (2003) 2715.
[33] M. Rowley, P.D. Leeson, B.J. Williams, K.W. Moore, R. Baker, Tetrahedron 48
(2002) 3557.
In summary, we have reported two classes of simple, low
molecular weight ligands, namely amino acid derived primary amides
and hydroxamic acids, that together with [RhCp*Cl2]2 or [IrCp*Cl2]2
are efficient and compatible catalysts for transfer hydrogenation not
only in 2-propanol as previously published, but also in aqueous media.
When using these ligands in the water/lithium formate/SDS system,
conversions and selectivities are high for most of the substrates
evaluated, proving the usefulness of these catalyst systems.
[34] A. Bacchi, P. Pelagatti, C. Pelizzi, D. Rogolino, J. Organomet. Chem. 694 (2009)
3200.
[35] K. Ahlford, M. Livendahl, H. Adolfsson, Tetrahedron Lett. 50 (2009) 6321.
Acknowledgements
The Swedish Research Council, the Knut and Alice Wallenberg
foundation and the Carl Trygger Foundation are gratefully acknowl-
edged for financial support.