Please do not adjust margins
ChemComm
Page 5 of 5
DOI: 10.1039/C6CC06971A
COMMUNICATION
Journal Name
3
(a) L. Gao, D. Xu and B. Zheng, Chem. Commun., 2014, 50,
that the sizes of nanosphere are unchanged after reaction (Fig.
S30, S31). The PXRD of HG xerogel do not change after
immersing it in THF at 40 °C (HG@THF), thus confirming its
stability (Fig.S32). To further prove that the surface exposed
amide groups are essential for the catalytic activity, we have
performed same catalytic reactions with nanofiber OG xerogel.
Interestingly, no conversion of product is observed even after
12 hours. This suggests that OG xerogel cannot catalyze the
reaction. Stability of OG xerogel in THF at 40 °C (OG@THF) is
confirmed by PXRD and TEM (Fig S33, S34). Since the amide
groups are not exposed on the surface of nano-fiber, the
reactants could not access the catalytic sites and therefore
reaction did not occurred. This further supports our conjecture
12142-12145; (b) P. K. Vemula and G. John, Chem. Commun.,
2006, 2218-2220; (c) N. Minakuchi, K. Hoe, D. Yamaki, S. Ten-
no, K. Nakashima, M. Goto, M. Mizuhata and T. Maruyama,
Langmuir., 2012, 28, 9259-9266; (d) T. Kar, S. K. Mandal and
P. K. Das, Chem. – Eur. J., 2011, 17, 14952-14961; (e) N. Yan,
G. He, H. Zhang, L. Ding and Y. Fang, Langmuir., 2010, 26
5909-5917.
,
4
5
(a) K. Jalani, M. Kumar and S. J. George, Chem. Commun.,
2013, 49, 5174-5176; (b) A. Das and S. Ghosh, Chem.
Commun. 2011, 47, 8922-8924; (c) L. Zhang, X. Wang, T.
Wang and M. Liu, Small, 2015, 11
Busseron, Y. Ruff, E. Moulin and N. Giuseppone, Nanoscale.
2013, , 7098-7140; (e) C. Liu, Q. Jin, K. Lv, L. Zhang and M.
, 1024-1024; (d) E.
5
Liu, Chem. Commun. 2014, 50, 3702-3705.
(a) K. V. Rao, K. Jayaramulu, T. K. Maji and S. J. George,
Angew. Chem. Int. Ed., 2010, 49, 4218-4222; (b) S. Basak, S.
of different self-assembly of
as discussed earlier.
L in two different solvent systems
Bhattacharya, A. Datta and A. Banerjee, Chem.
20, 5721-5726; (c) V. M Agranovich, Y. N. Gartstein and M.
Litinskaya, Chem. Rev., 2011, , 5179-5214; (d) M. Kumar, K.
– Eur. J. 2014,
The preceding results demonstrate design of a LMWG which
can self-assemble in both aqueous and organic medium
resulting into hydrogel and organogel, respectively. Hydrogel
shows unique spherical morphology and CT emission.
However, the organogel shows typical fibrous morphology.
The nanospheres of hydrogel are utilized for catalysing
Knoevenagel condensation reaction, whereas the nano-fibers
of organogel fail to show catalytic activity due to inaccessibility
of free amide groups. This work would open up a new
perspective to rationally design LMWG that can form both
organogel and hydrogel and explore their catalytic
applications. Furthermore, the effect of metal ion coordination
on self-assembly of this LMWG and their properties can be
explored.
9
V. Rao and S. J. George, Chem. Commun., 2014, 16, 1300-
1313; (e) Y. Liu, N. Zheng, H. Li and B. Yin, Soft Matter., 2013,
9
Bhattacharya, Nanoscale., 2016, 11224-11233; (g) S.
,
5261-5269; (f) S. Bhattacharjee, B. Maiti and S.
8,
Bhattacharjee and S. Bhattacharya, Chem. Asian. J., 2015, 10
572-580.
,
6
(a) E. M. Schneider, M. Zeltner, N. Kranzlin, R. N. Grass and
W. J. Stark, Chem. Commun. 2015, 51, 10695-10698; (b) S. D.
Walker, C. J. Borths, E. DiVirgilio, L. Huang, P. Liu, H.
Morrison, K. Sugi, M. Tanaka, J. C. S. Woo and M. M. Faul,
Org. Process Res. Dev., 2011, 15, 570; (c) L. R. Madivada, R.
R. Anumala, G. Gilla, S. Alla, K. Charagondla, M. Kagga, A.
Bhattacharya and R. Bandichhor, Org. Process Res. Dev.,
2009, 13, 1190-1194; (d) E. Knoevenagel, Ber. Dtsch. Chem.
Ges., 1898, 31, 2596.
TKM is grateful to the Department of Science and Technology
(DST, Project No. MR-2015/001019), Government of India
(GOI) and JNCASR for financial support. PS is thankful to
Council of Scientific and Industrial Research (CSIR), GOI for
fellowship.
7
(a) V. M. Suresh, S. Bonakala, H. S. Atreya, S.
Balasubramanian and T. K. Maji, ACS. Appl. Mater.
Interfaces., 2014, 6, 4630-4637; (b) S. Hasegawa, S. Horike, R.
Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita and S.
Kitagawa, J. Am. Chem. Soc., 2007, 129, 2607-2614; (c) R.
Haldar, S. K. Reddy, V. M. Suresh, S. Mohapatra, S.
Balasubramanian and T. K. Maji, Chem. – Eur. J., 2014, 20
,
4347-4356; (d) J. Park, J.-R. Li, Y.-P. Chen, J. Yu, A. A.
Yakovenko, Z. U. Wang, L.-B. Sun, P. B. Balbuena and H.-C.
Zhou, Chem. Commun., 2012, 48, 9995-9997; (e) Y. K. Hwang,
D.-Y. Hong, J.-S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A.
Vimont, M. Daturi, C. Serre and G. Férey, Angew. Chem. Int.
Ed., 2008, 47, 4144-4148.
(a) M. Maity and U. Maitra, J. Mater. Chem. A., 2014, 2,
18952-18958; (b) F. Rodriguez-Llansola, J. F. Miravet and B.
Escuder, Chem. Commun., 2009, 7303-7305. (c) F. Hapiot, S.
Menuel and E. Monflier, ACS Catal., 2013, 3, 1006-1010; (d)
Notes and references
1
(a) J. W. Steed, Chem. Soc. Rev., 2010, 39, 3686-3699; (b) N.
M. Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821-
836; (c) M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet and B.
Escuder, Chem. Soc. Rev., 2013, 42, 7086-7098; (d) M.-O. M.
Piepenbrock, N. Clarke, J. A. Foster and J. W. Steed, Chem.
Commun., 2011, 47, 2095-2097; (e) C. Tomasini and N.
Castellucci, Chem. Soc. Rev., 2013, 42, 156-172.
8
9
K. R. Reddy, K. Rajgopal, C. U. Maheswari and M. Lakshmi
Kantam, New. J. Chem., 2006, 30, 1549-1552.
B. G. Bag and S. S. Dash, Langmuir, 2015, 31, 13664-13672.
2
(a) S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev.,
2014, 114, 1973-2129; (b) H.-Q. Peng, L.-Y. Niu, Y.-Z. Chen, L.-
Z. Wu, C.-H. Tung and Q.-Z. Yang, Chem. Rev., 2015, 115
,
10 (a) J. F. Michalec, S. A. Bejune, D. G. Cuttell, G. C.
Summerton, J. A. Gertenbach, J. S. Field, R. J.Haines and D. R.
McMillin, Inorg. Chem., 2001, 40, 2193-2200; (b) Y. H. Lee, N.
V. Nghia, M. J. Go, J. Lee, S. U. Lee and M. H. Lee,
Organometallics., 2014, 33, 753-762.
11 R. Haldar, R. Matsuda, S. Kitagawa, S. J. George and T. K.
Maji, Angew. Chem. Int. Ed., 2014, 126, 11966-11971.
12 A. Chakraborty, S. Bhattacharyya, A. Hazra, A. C. Ghosh and
T. K. Maji, Chem. Commun., 2016, 52, 2831-2834.
7502-7542; (c) B. O. Okesola and D. K. Smith, Chem. Soc.
Rev., 2016, 45, 4226-4251; (d) P. Sutar and T. K. Maji, Chem.
Commun., 2016, 52, 8055-8074; (e) P. Sutar, V. M. Suresh
and T. K. Maji, Chem. Commun., 2015, 51, 9876-9879; (f) X.
Du, J. Zhou, J. Shi and B. Xu, Chem. Rev., 2015, 115, 13165-
13307; (g) J. Li, L. Mo, C.-H. Lu, T. Fu, H.-H. Yang and W. Tan,
Chem. Soc. Rev., 2016, 45, 1410-1431; (h) M. Martínez-Calvo,
O. Kotova, M. E. Möbius, A. P. Bell, T. McCabe, J. J. Boland
and T. Gunnlaugsson, J. Am. Chem. Soc., 2015, 137, 1983-
1992; (i) Z. Yu, J. Zhang, R. J. Coulston, R. M. Parker, F.
Biedermann, X. Liu, O. A. Scherman and C. Abell, Chem. Sci.
2015, 6, 4929-4933.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins