Paper
RSC Advances
Acknowledgements
V. K. Gupta is thankful to the University Grant Commission
UGC), New Delhi for the award of BSR meritorious fellowship.
(
References
1
2
S. Reineke, Nat. Photonics, 2014, 8, 269–270.
R. N. Dsouza, U. Pischel and W. M. Nau, Chem. Rev., 2011,
111, 7941–7980.
3
Ch. Bosshard, M. Bosch, I. Liakatas, M. Jager and P. Gunter,
in Nonlinear optical effects and materials, ed. P. Gunter,
Springer-Verlag, Berlin, 2000, ch. 3.
4
5
S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere and
J. Roncali, J. Am. Chem. Soc., 2006, 128, 3459–3466.
M. Klikar, F. Bures, O. Pytela, T. Mikysek, Z. Padelkova,
A. Barsella, K. Dorkenood and S. Achelle, New J. Chem.,
Fig. 12 Fluorescence spectra of chromophores 1, 2, 3 and 4 in solid.
2013, 37, 4230–4240.
6
7
X. Y. Shen, W. Z. Yuan, Y. Liu, Q. Zhao, P. Lu, Y. Ma,
I. D. Williams, A. Qin, J. Z. Sun and B. Z. Tang, J. Phys.
Chem. C, 2012, 116, 10541–10547.
B. Carlotti, A. Spalletti, M. Sindler-Kulykb and F. Elisei, Phys.
Chem. Chem. Phys., 2011, 13, 4519–4528.
J. Y. Lee and K. S. Kim, J. Chem. Phys., 2001, 115, 9484–9489.
T. Seidler, K. Stadnicka and B. Champagne, J. Chem. Theory
Comput., 2014, 10, 2114–2124.
their crystal structure and packing. Chromophores 3 and 4
contain two molecules in their unit cells which are almost
parallel to each other [Fig S13(c) and (d)†] and results in
3D-sheet arrangement in crystal lattice (Fig. 5 and 6) as dis-
8
9
cussed in Section 4.1. Such type of parallel arrangement of
molecules has been found in the packing of 4-(diisopropyla-
34
mino)benzonitrile (DIABN) and responsible for dual uores-
35
10 C. Botta, E. Cariati, G. Cavallo, V. Dichiarante, A. Forni,
P. Metrangolo, T. Pilati, G. Resnati, S. Righetto,
G. Terraneoc and E. Tordin, J. Mater. Chem. C, 2014, 2,
cence in solid state. This is because smaller energy gap DE(S1,
S2) between the two lowest excited singlet states leads to a
lowering of barrier for dual uorescence. However, in the case
of chromophore 1 eight molecules are present in unit cell are
distributed in four pairs and each pair have the two molecules
almost perpendicular to each other [Fig. S13(a)†]. In the case of
chromophore 2, the two molecules in unit cell are distant apart
and no such interaction exists [Fig. S13(b)†].
5275–5279.
11 Z. Yang, M. Jazbinsek, B. Ruiz, S. Aravazhi, V. Gramlich and
P. Gunter, Chem. Mater., 2007, 19, 3512–3518.
1
2 B. J. Coe, J. A. Harris, I. Asselberghs, K. Wostyn, K. Clays,
A. Persoons, B. S. Brunschwig, S. J. Coles, T. Gelbrich,
M. E. Light, M. B. Hursthouse and K. Nakatani, Adv. Funct.
Mater., 2003, 13, 347–357.
1
3 P. J. Kim, M. Jazbinsek and O. P. Kwon, Cryst. Growth Des.,
5. Conclusions
2011, 11, 3060–3064.
We have explored a comparative study about the solubility and 14 P. J. Kim, J. H. Jeong, M. Jazbinsek, S. J. Kwon, H. Yun,
large single crystal growth of a series of push–pull chromo-
phores 1 to 4 having dimethylamino group as an electron donor
J. T. Kim, Y. S. Lee, I. H. Baek, F. Rotermund, P. Gunter
and O. P. Kwon, CrystEngComm, 2011, 13, 444–451.
with varying electron acceptors. Chromophores 3 and 4 showed 15 O. P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider,
better growth rate and optical quality than chromophores 1 and
M. Jazbinsek, V. Gramlich and P. Gunter, Chem. Mater.,
2006, 18, 4049–4405.
2
. Chromophores 2, 3 and 4 exhibit relatively higher thermal
ꢁ
stability with decomposition temperatures more than 300.0 C. 16 S. J. Kwon, M. Jazbinsek, O. P. Kwon and P. Gunter, Cryst.
Chromophores 2, 3 and 4 are highly uorescent in solution as
Growth Des., 2010, 10, 1552–1558.
well in solid state. However, chromophore 1 exhibit strong 17 (a) T. Kolev, Z. Glavcheva, D. Yancheva, M. Sch u¨ rmann,
uorescence in solid state, and in solution its uorescent
D. C. Kleb, H. Preut and P. Bleckmann, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2001, 57, o561–o562; (b)
S. H. Lee, M. J. Koo, M. Jazbinsek and O. P. Kwon, Cryst.
Growth Des., 2014, 14, 6024–6032.
property is solvent dependent (uoresce only in toluene). All the
chromophores possess a signicant change in dipole moment
upon excitation. Quantum yield of chromophores did not vary
drastically with the change in solvent polarity. Thus solubility, 18 (a) J. Y. Seo, M. Jazbinsek, E. Y. Choi, S. H. Lee, H. Yun,
crystal quality, thermal and optical properties of charge transfer
chromophores is sensitive to the nature of acceptor moiety.
These studies give a new direction to give grow large single
crystals of push–pull chromophores for various opto-electronic
applications.
J. T. Kim, Y. S. Lee and O. P. Kwon, Cryst. Growth Des.,
2013, 13, 1014–1022; (b) T. C. Lin, J. M. Cole,
A. P. Higginbotham, A. J. Edwards, R. O. Piltz, J. Perez-
Moreno, J. Y. Seo, S. C. Lee, K. Clays and O. P. Kwon, J.
Phys. Chem. C, 2013, 117, 9416–9430.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 38591–38600 | 38599