ACS Chemical Biology
Articles
and after (total PLP) the addition of 0.2 M NaOH was measured, as
previously described.40−43 The difference between the two values
corresponds to the PLP concentration that is bound to the enzyme
(holoenzyme concentration). Free PLP has a maximum absorbance at
388 nm with an extinction coefficient of 6600 M−1 cm−1 in 0.1 M
NaOH.43 The ε388 of free PLP in 0.2 M NaOH was measured by
using 40 μM and 80 μM PLP and was found to be ∼6525 M−1 cm−1.
All measurements were performed in triplicate.
phosphono-3-pentenoic acid, a new amino acid from N-1409
substance, an antagonist of threonine. Agric. Biol. Chem. 40, 1905−
1906.
(9) Park, B. K., Hirota, A., and Sakai, H. (1977) Studies on new
antimetabolite produced by microorganism. Part III. Structure of
plumbemycin A and B, antagonists of L-threonine from Streptomyces
plumbeus. Agric. Biol. Chem. 41, 573−579.
(10) Kugler, M., Loeffler, W., Rapp, C., Kern, A., and Jung, G.
(1990) Rhizocticin A, an antifungal phosphono-oligopeptide of
Bacillus subtilis ATCC 6633: biological properties. Arch. Microbiol.
153, 276−281.
(11) Capitani, G., Tschopp, M., Eliot, A. C., Kirsch, J. F., and
Grutter, M. G. (2005) Structure of ACC synthase inactivated by the
mechanism-based inhibitor L-vinylglycine. FEBS Lett. 579, 2458−
2462.
(12) Amorim Franco, T. M., Favrot, L., Vergnolle, O., and
Blanchard, J. S. (2017) Mechanism-Based Inhibition of the
Mycobacterium tuberculosis Branched-Chain Aminotransferase by
d- and l-Cycloserine. ACS Chem. Biol. 12, 1235−1244.
(13) Peisach, D., Chipman, D. M., Van Ophem, P. W., Manning, J.
M., and Ringe, D. (1998) d-Cycloserine Inactivation of d-Amino Acid
Aminotransferase Leads to a Stable Noncovalent Protein Complex
with an Aromatic Cycloserine-PLP Derivative. J. Am. Chem. Soc. 120,
2268−2274.
(14) Jastrzebowska, K., and Gabriel, I. (2015) Inhibitors of amino
acids biosynthesis as antifungal agents. Amino Acids 47, 227−249.
(15) Borisova, S. A., Circello, B. T., Zhang, J. K., van der Donk, W.
A., and Metcalf, W. W. (2010) Biosynthesis of rhizocticins, antifungal
phosphonate oligopeptides produced by Bacillus subtilis ATCC 6633.
Chem. Biol. 17, 28−37.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Additional materials and methods, supporting figures,
and supporting tables (PDF)
Accession Codes
The structures presented in this article have been deposited in
the PDB under accession codes (6CGQ) and (6NMX).
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(16) Schildkraut, I., and Greer, S. (1973) Threonine synthetase-
catalyzed conversion of phosphohomoserine to alpha-ketobutyrate in
Bacillus subtilis. J. Bacteriol. 115, 777−785.
(17) Flavin, M., and Slaughter, C. (1960) Purification and properties
of threonine synthetase of Neurospora. J. Biol. Chem. 235, 1103−
1108.
Author Contributions
⊥N.P. and M.A.O. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(18) Omi, R., Goto, M., Miyahara, I., Mizuguchi, H., Hayashi, H.,
Kagamiyama, H., and Hirotsu, K. (2003) Crystal structures of
threonine synthase from Thermus thermophilus HB8: conformational
change, substrate recognition, and mechanism. J. Biol. Chem. 278,
46035−46045.
(19) Murakawa, T., Machida, Y., and Hayashi, H. (2011) Product-
assisted catalysis as the basis of the reaction specificity of threonine
synthase. J. Biol. Chem. 286, 2774−2784.
■
We thank the staff at Life Sciences Collaborative Access Team
(LS-CAT, Argonne National Laboratory, Argonne, IL) for
facilitating data collection. We also thank K.S. Ju, M.N.
̃
Goettge, E. Parkinson, M.M. Lopez-Munoz, and K.K. Wang for
helpful discussions. Funded by NIH grants PO1GM077596
(to S.K.N. and W.W.M.) and R01GM127659 (to W.W.M.).
́
(20) Shoji, M., Hanaoka, K., Ujiie, Y., Tanaka, W., Kondo, D.,
Umeda, H., Kamoshida, Y., Kayanuma, M., Kamiya, K., Shiraishi, K.,
Machida, Y., Murakawa, T., and Hayashi, H. (2014) A QM/MM
study of the L-threonine formation reaction of threonine synthase:
implications into the mechanism of the reaction specificity. J. Am.
Chem. Soc. 136, 4525−4533.
(21) Ujiie, Y., Tanaka, W., Hanaoka, K., Harada, R., Kayanuma, M.,
Shoji, M., Murakawa, T., Ishida, T., Shigeta, Y., and Hayashi, H.
(2017) Molecular Mechanism of the Reaction Specificity in
Threonine Synthase: Importance of the Substrate Conformations. J.
Phys. Chem. B 121, 5536−5543.
(22) Webb, M. R. (1992) A continuous spectrophotometric assay
for inorganic phosphate and for measuring phosphate release kinetics
in biological systems. Proc. Natl. Acad. Sci. U. S. A. 89, 4884−4887.
(23) Schneider, G., Kack, H., and Lindqvist, Y. (2000) The manifold
of vitamin B6 dependent enzymes. Structure 8, R1−6.
(24) Eliot, A. C., and Kirsch, J. F. (2004) Pyridoxal phosphate
enzymes: mechanistic, structural, and evolutionary considerations.
Annu. Rev. Biochem. 73, 383−415.
REFERENCES
■
(1) Metcalf, W. W., and van der Donk, W. A. (2009) Biosynthesis of
Phosphonic and Phosphinic Acid Natural Products. Annu. Rev.
Biochem. 78, 65−94.
(2) Laber, B., Gerbling, K. P., Harde, C., Neff, K. H., Nordhoff, E.,
and Pohlenz, H. D. (1994) Mechanisms of interaction of Escherichia
coli threonine synthase with substrates and inhibitors. Biochemistry 33,
3413−3423.
(3) Laber, B., Lindell, S. D., and Pohlenz, H. D. (1994) Inactivation
of Escherichia coli threonine synthase by DL-Z-2-amino-5-phospho-
no-3-pentenoic acid. Arch. Microbiol. 161, 400−403.
(4) Flavin, M., and Slaughter, C. (1960) Threonine synthetase
mechanism: studies with isotopic hydrogen. J. Biol. Chem. 235, 1112−
1118.
(5) Skarstedt, M. T., and Greer, S. B. (1973) Threonine synthetase
of Bacillus subtilis. The nature of an associated dehydratase activity. J.
Biol. Chem. 248, 1032−1044.
(6) Rapp, C., Jung, G., Kugler, M., and Loeffler, W. (1988)
Rhizocticins - new phosphono-oligopeptides with antifungal activity.
Liebigs Ann. Chem. 1988, 655−661.
(7) Michener, H. D., and Snell, N. (1949) Two antifungal
substances from Bacillus subtilis cultures. Arch. Biochem. 22, 208−214.
(8) Park, B. K., Hirota, A., and Sakai, H. (1976) Studies on new
antimetabolite produced by microorganism. Part II. 2-Amino-5-
(25) Wolfenden, R. (1974) Enzyme catalysis: conflicting require-
ments of substrate access and transition state affinity. Mol. Cell.
Biochem. 3, 207−211.
(26) Schirch, V., Shostak, K., Zamora, M., and Guatam-Basak, M.
(1991) The origin of reaction specificity in serine hydroxymethyl-
transferase. J. Biol. Chem. 266, 759−764.
H
ACS Chem. Biol. XXXX, XXX, XXX−XXX