Organic Letters
Letter
as the catalyst for Oxone−NaCl oxidative cycloaddition
(Scheme 6), while stoichiometric water from the condensation
AUTHOR INFORMATION
■
Corresponding Author
Scheme 6. Three-Component Oxidation Reaction of
Aldehyde, Hydroxylamine Hydrochloride, and Alkene
23587357
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was financially supported by the Research Grant
Council of Hong Kong (GRF 605113, 16311716, 16303617)
and the National Natural Science Foundation of China (NSFC
21472160 and 21772167).
to aldoxime was beneficial for dissolving the Oxone or at least
tolerated in the second step. To verify our hypothesis, we
carried out the experiment by simply mixing the aldehyde (6a
or 6an), hydroxylamine hydrochloride, Na2CO3, Oxone, and
the alkene (2a or 2r) in CH3CN in one flask, and the mixture
was stirred vigorously for 12 h. To our delight, comparable
high yields (63−81%) were obtained for all three representa-
tive examples (3a, 3r, and 3an). This was truly remarkable
because it was (1) a new three-component reaction that
formed three new bonds, CN, C−C, and C−O, (2) a good
example that a byproduct (NaCl) in the first step was fully
utilized in the second step (one pot) as a catalyst or reagent,
and (3) the greenest and most atom-economic [3 + 2]-
cycloaddition of nitrile oxides with alkenes. It is expected that
other aldehydes and alkenes could be used for this three-
component oxidative cycloaddition with hydroxylamine−HCl.
In summary, we have developed a new green protocol for
efficient in situ generation of nitrile oxides from Oxone/NaCl
oxidation of aldoximes for 1,3-dipolar cycloaddition with
different alkenes and alkynes. The key feature of this new
method is the use of a green chemistry approach to address the
substrate scope: broad scope (aliphatic, aromatic, alkenyl
aldoximes) without generation of organic byproducts. The
simple open-flask operation, low-cost and nontoxic reagents,
and air and moisture insensitivity are of high value and should
attract attention from the synthetic community and find wide
applications in organic synthesis. Finally, we successfully
achieved a new three-component reaction of aldehyde,
hydroxylamine hydrochloride, and alkenes for the synthesis
of isoxazolines by exploiting the hypothetic mechanism with a
green chemistry approach. This three-component oxidative
cycloaddition is expected to have an extensive impact on
application of cycloaddition of nitrile oxides in medicinal and
organic synthesis.
REFERENCES
(1) Heaney, F. Eur. J. Org. Chem. 2012, 2012, 3043.
(2) Pellissier, H. Tetrahedron 2007, 63, 3235.
■
(3) (a) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
(b) Kissane, M.; Maguire, A. R. Chem. Soc. Rev. 2010, 39, 845.
(4) (a) Easton, C. J.; Hughes, C. M. M.; Savage, G. P.; Simpson, G.
W. Adv. Heterocycl. Chem. 1994, 60, 261. (b) Roscales, S.; Plumet, J.
Org. Biomol. Chem. 2018, 16, 8446.
(5) (a) Feuer, H., Ed. Nitrile Oxides, Nitrones, and Nitroates in
Organic Synthesis; John Wiley & Sons, 2008. (b) Padwa, A., Pearson,
W. H., Eds. Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry toward Heterocycles and Natural Products; John Wiley &
Sons: New York, 2002.
(6) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. J. Org. Chem. 2010, 75,
1961.
(7) Bonne, D.; Salat, L.; Dulcere, J.-P.; Rodriguez, J. Org. Lett. 2008,
10, 5409.
̀
(8) Choe, H.; Cho, H.; Ko, H.-J.; Lee, J. Org. Lett. 2017, 19, 6004.
(9) Nomura, T.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2018, 20,
119.
(10) (a) Bode, J. W.; Fraefel, N.; Muri, D.; Carreira, E. M. Angew.
Chem., Int. Ed. 2001, 40, 2082. (b) Bode, J. W.; Carreira, E. M. J. Am.
Chem. Soc. 2001, 123, 3611. (c) Fader, L. D.; Carreira, E. M. Org. Lett.
2004, 6, 2485. (d) Lohse-Fraefel, N.; Carreira, E. M. Org. Lett. 2005,
7, 2011. (e) Muri, D.; Lohse-Fraefel, N.; Carreira, E. M. Angew.
Chem., Int. Ed. 2005, 44, 4036. (f) Becker, N.; Carreira, E. M. Org.
Lett. 2007, 9, 3857. (g) Lohse-Fraefel, N.; Carreira, E. M. Chem. - Eur.
J. 2009, 15, 12065.
(11) Maugein, N.; Wagner, A.; Mioskowski, C. Tetrahedron Lett.
1997, 38, 1547.
(12) Shimizu, T.; Hayashi, Y.; Furukawa, N.; Teramura, K. Bull.
Chem. Soc. Jpn. 1991, 64, 318.
(13) Torssell, K. B. G.; Hazell, A. C.; Hazell, R. G. Tetrahedron
1985, 41, 5569.
(14) Shimizu, T.; Hayashi, Y.; Shibafuchi, H.; Teramura, K. Bull.
Chem. Soc. Jpn. 1986, 59, 2827.
(15) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.
(16) McKillop, A.; Kobylecki, R. J. Tetrahedron 1974, 30, 1365.
(17) Zen, S.; Harada, K.; Nakamura, H.; Iitaka, Y. Bull. Chem. Soc.
Jpn. 1988, 61, 2881.
(18) Nakamura, A.; Kanou, H.; Tanaka, J.; Imamiya, A.; Maegawa,
T.; Miki, Y. Org. Biomol. Chem. 2018, 16, 541.
(19) Mendelsohn, B. A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V. S.;
Ciufolini, M. A. Org. Lett. 2009, 11, 1539.
(20) Minakata, S.; Okumura, S.; Nagamachi, T.; Takeda, Y. Org.
Lett. 2011, 13, 2966.
(21) Han, L.; Zhang, B.; Xiang, C.; Yan, J. Synthesis 2014, 46, 503.
(22) Read, M. W.; Ray, P. S. J. Heterocycl. Chem. 1995, 32, 1595.
(23) Tanaka, S.; Kohmoto, S.; Yamamoto, M.; Yamada, K. Nippon
Kagaku Kaishi 1992, 1992, 420.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental details, procedures, and characterization of
D
Org. Lett. XXXX, XXX, XXX−XXX