54
L. Jafarpour et al. / Journal of Organometallic Chemistry 606 (2000) 49–54
RuꢁCH), 7.30 (br, 2 H, o-C6H5), 7.21 (m, 1 H, p-
C6H5), 7.03 (t, J=6.4 Hz, 2 H, p-C6H3(CH(CH3)2),
6.76 (br., 4 H, m-C6H3(CH(CH3)2), 6.68 (s, 2 H,
NCHCHN), 6.65 (m, 2 H, m-C6H5), 3.87(sep, J=6.8
References
[1] (a) G.W. Parshall, S.D. Ittel, Homogeneous Catalysis, Wiley,
New York, 1992. (b) L.H. Pignolet, Homogeneous Cata-
lysis with Metal Phosphine Complexes, Plenum, New York,
1983.
Hz,
1
H, C6H3(CH(CH3)2), 3.43 (m,
1
H,
C6H3(CH(CH3)2), 2.40 (m, 2 H, C6H3(CH(CH3)2), 1.64
(d, J=6.8 Hz, 6 H, C6H3(CH(CH3)2), (d, 6 H,
C6H3(CH(CH3)2), 1.01 (d, 6 H, C6H3(CH(CH3)2), 0.98
(d, 6 H, C6H3(CH(CH3)2), 1.49, 1.16–1.06, 0.90 (all m
PCy3). 31P{1H}-NMR (400 MHz, C6D6): l 30.33 (s).
Anal. Calc. for C52H75Cl2N2PRu: C, 67.08; H, 8.12; N,
3.01. Found: C, 67.37; H, 8.34; N, 2.85%.
[2] J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Princi-
ples and Applications of Organotransition Metal Chemistry,
2nd, University Science, Mill Valley, CA, 1987.
[3] (a) For a brief review of the first carbene of this type, see:
H.W. Wanzlick, Angew. Chem. Int. Ed. Engl. 1 (1962) 75. For
a review of these ligands as phosphine mimics, see: M.F. Lap-
pert, J. Organomet. Chem. 358 (1988) 185. (b) For a review
dealing with carbene steric factors and stability, see: A.J. Ar-
duengo III, R. Krafczyk, Chem. Z. 32 (1998) 6.
[4] (a) S.T. Nguyen, R.H. Grubbs, J.W. Ziller, J. Am. Chem. Soc.
115 (1993) 9858. (b) P. Schwab, M.B. France, J.W. Ziller,
R.H. Grubbs, Angew. Chem. Int. Ed. Engl. 34 (1995) 2039 (c)
P. Schwab, R.H. Grubbs, J.W. Ziller, J. Am. Chem. Soc. 118
(1996) 100. (d) E.L. Diaz, S.T. Nguyen, R.H. Grubbs, J. Am.
Chem. Soc. 119 (1997) 3887 and the references cited therein.
(e) S.T. Nguyen, L.K. Johnson, R.H. Grubbs, J. Am. Chem.
Soc. 114 (1992) 3974. (f) A.W. Stumpf, E. Saive, A. Demon-
ceau, A.F. Noles, J. Chem. Soc. Chem. Commun. (1995) 1127.
(g) Z. Wu, S.T. Nguyen, R.H. Grubbs, J.W. Ziller, J. Am.
Chem. Soc. 117 (1995) 5503. (h) W.A. Herrmann, W.C. Schat-
tenmann, O. Nuyken, S.C. Glander, Angew. Chem. Int. Ed.
Engl. 35 (1996) 1087. (i) B. Mohr, D.M. Lynn, R.H. Grubbs,
Organometallics 15 (1996) 4317. (j) A. Demonceau, A.W.
Stumpf, E. Saive, A.F. Noles, Macromolecules 30 (1997) 3127.
(k) J.S. Kingsbury, J.P.A. Harrity, P.J. Bonitatebus Jr., A.H.
Hoveyda, J. Am. Chem. Soc. 121 (1999) 791.
5.9. Ring closing metathesis procedure
In the dry box catalyst precursor (5 mol%) was
accurately weighed in a Wilmad screw-capped NMR
tube and dissolved in CD2Cl2 (0.4 ml). Diethyldiallyl
malonate (0.02 g, 0.1 mmol) was added to the solution
and the sealed NMR tube was kept at r.t. Product
formation and diene disappearance were monitored by
integrating the allylic methylene peaks in the proton
NMR spectrum. Product formation was confirmed by
comparison with literature NMR data [4d].
6. X-ray diffraction measurements
[5] M. Ulman, R.H. Grubbs, Organometallics 17 (1998) 2484–
2489.
A single crystal of 6 or 9 was coated with paratone
oil and then sealed in a glass capillary tube. The X-ray
data were collected at low temperature using graphite-
monochromated Mo–Ka radiation on a Siemens P4
automated X-ray diffractometer. The structure was
solved using direct methods (SHELXS-86) and refined by
full matrix least-square techniques. Initial fractional
coordinates for the Ru atom were determined by heavy-
atom methods, and the remaining non-hydrogen atoms
were located by successive difference Fourier calcula-
tions, which were performed with algorithms provided
by SHELXTL IRIS operating on a Silicon Graphics IRIS
Indigo workstation. Crystallographic data can be found
in the Table 1, and selected bond distances and bond
angles are presented in Tables 2 and 3.
[6] (a) J. Huang, E.D. Stevens, S.P. Nolan, J.L. Petersen, J. Am.
Chem. Soc. 121 (1999) 2674. (b) M. Scholl, T.M. Trnka, J.P.
Morgan, R.H. Grubbs, Tetrahedron Lett. 40 (1999) 2247. (c)
L. Ackermann, A. Furstner, T. Weskamp, F.J. Kohl, W.A.
Herrmann, Tetrahedron Lett. 40 (1999) 4787.
[7] J. Huang, H.J. Schanz, E.D. Stevens, S.P. Nolan,
Organometallics 18 (1999) 2370.
[8] A.J. Arduengo III, U. S. Patent 5077414, 1991.
[9] A.J. Arduengo III, The ligand IPr has been synthesized by
Arduengo and co-workers, private communication.
[10] K. Yang, R.J. Lachicotte, R. Eisenberg, Organometallics 16
(1997) 5234.
[11] A.J. Arduengo III, H.V.R. Dias, R.L. Harlow, M. Kline, J.
Am. Chem. Soc. 114 (1992) 5530.
[12] P.J. Fagan, M.D. Ward, J.V. Caspar, J.C. Calabrese, P.J.
Krusic, J. Am. Chem. Soc. 110 (1998) 2981.
[13] B.K. Campion, R.H. Heyen, T.D. Tilley, J. Chem. Soc. Chem.
Commun. (1998) 278.
6.1. Supplementary material
[14] Solution calorimetric protocol is similar to that previously re-
ported: S.A. Serron, J. Huang, S.P. Nolan, Organometallics 13
(1998) 534.
Details of crystal structure determination for 6 and 9
(PDF).
[15] L. Luo, S.P. Nolan, Organometallics 13 (1994) 4781–4786.
[16] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory
Chemicals, Pergamon, New York, 1988.
[17] G. Ojelund, I. Wadso¨, Acta Chem. Scand. 22 (1968) 1691.
[18] M.V.J. Kilday, Res. Natl. Bur. Stand. (US) 85 (1980) 467.
[19] (a) S.P. Nolan, C.D. Hoff, J.T. Landrum, J. Organomet.
Chem. 282 (1985) 357. (b) S.P. Nolan, R. Lopez de la Vega,
C.D. Hoff, Inorg. Chem. 25 (1986) 4446.
Acknowledgements
The Board of Regents of the State of Louisiana and
the National Science Foundation (CHE-9985213) are
acknowledged for support of this work.
.