Journal of the American Chemical Society
Communication
ACKNOWLEDGMENTS
■
Financial support from the Office of Naval Research (NOOO14-
12-1-0536), the Defense Threat Reduction Agency (HDTRA 1-
11-1-0034), and CFD Research Corporation is gratefully
acknowledged.
REFERENCES
■
(1) Das, A.; Ghosh, S. Angew. Chem., Int. Ed. 2014, 53, 2038−2054.
(2) (a) Zhang, C.; Wang, X.; Huang, H. J. Am. Chem. Soc. 2008, 130,
8359−8365. (b) Zhang, C.; Xue, X.; Cao, Y.; Zhou, Y.; Li, H.; Zhou, J.;
Gao, T. CrystEngComm 2013, 15, 6837−6844. (c) Zhang, J.; Zhang, Q.;
Vo, T. T.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137,
1697−1704.
Figure 3. (a) Model for external forces acting on hydroxylammonium 4-
amino-furazan-3-yl-tetrazol-1-olate (4) crystal unit cell. Any mechanical
stimulus can be analyzed into three forces along three axes. (b) Internal
stress curve along the a and b axes for 4 and RDX. (c) Plot showing the
sliding constraint of the RDX crystal unit cell along the b axis.
(3) Ma, Y.; Zhang, A.; Zhang, C.; Jiang, D.; Zhu, Y.; Zhang, C. Cryst.
Growth Des. 2014, 14, 4703−4713.
(4) (a) Wood, P. A.; Feeder, N.; Furlow, M.; Galek, P. T. A.; Groom, C.
R.; Pidcock, E. CrystEngComm 2014, 16, 5839−5848. (b) Zhang, J.;
Parrish, D. A.; Shreeve, J. M. Chem. Commun. 2015, 51, 7337−7340.
(5) (a) Landenberger, K. B.; Bolton, O.; Matzger, A. J. J. Am. Chem. Soc.
2015, 137, 5074−5079. (b) Landenberger, K. B.; Bolton, O.; Matzger,
A. J. Angew. Chem., Int. Ed. 2013, 52, 6468−6471. (c) Bolton, O.;
Matzger, A. J. Angew. Chem., Int. Ed. 2011, 50, 8960−8963.
(0−219.8 MJ m3). It may be concluded that, in contrast to
compression deformation, the layer-by-layer HIEMs can readily
absorb mechanical stimuli by converting kinetic energy into layer
sliding to prevent the formation of hot spots. This also should be
the rationale for why high-performance insensitive energetic
materials can be used as desensitizers versus mechanical stimuli.
For comparison, the internal stress along the a axis and along the
b axis for RDX is calculated to be 0−365.0 and 0−115.0 MJ m3,
respectively, indicating that the slide is highly restricted because
of its packing mode.
In summary, we have developed a rapid and facile approach to
design high-performance insensitive energetic materials, which is
based on the hydrogen-bonding-promoted layer assembly of
energetic molecules and therefore enforces layer-by-layer
stacking in the solid state. By applying this strategy, a novel
energetic material, hydroxylammonium 4-amino-furazan-3-yl-
tetrazol-1-olate (4) was designed, synthesized, and fully
characterized, which shows good detonation performances (νD
= 9100 m s−1; P = 33.4 GPa) and excellent sensitivities (IS > 50 J;
FS > 360 N). The single-crystal X-ray structure of 4 confirmed
expected layer-by-layer stacking, and the layer combination is
exactly the same as in the design mode. These positive results
suggest that this qualitative approach will enhance the future
prospects for not only HIEMs design but also other solid-state
materials. Computational analysis of internal stress indicates that
the layer-by-layer geometries of HIEMs can readily absorb
mechanical stimuli by convert kinetic energy into layer sliding
and result in lower sensitivities.
(6) (a) Klapotke, T. M.; Schmid, P. C.; Schnell, S.; Stierstorfer, J. Chem.
̈
- Eur. J. 2015, 21, 9219−9228. (b) Dippold, A. A.; Klapotke, T. M. J. Am.
̈
Chem. Soc. 2013, 135, 9931−9938. (c) Zhang, Q.; Zhang, J.; Qi, X.;
Shreeve, J. M. J. Phys. Chem. A 2014, 118, 10857−10865.
(7) (a) Zhang, J.; Shreeve, J. M. J. Am. Chem. Soc. 2014, 136, 4437−
4445. (b) Fischer, N.; Fischer, D.; Klapotke, T. M.; Piercey, D. G.;
̈
Stierstorfer, J. J. Mater. Chem. 2012, 22, 20418−20422. (c) Witze, A.
Nature 2013, 500, 509−510.
(8) Molca
4211−4217.
̌ ́ ́ ́
nov, K.; Sabljic, I.; Kojic-Prodic, B. CrystEngComm 2011, 13,
(9) (a) Fischer, D.; Klapotke, T. M.; Stierstorfer, J. Angew. Chem., Int.
̈
J. Mater. Chem. A 2014, 2, 13006−13015. (c) Zhang, J.; Shreeve, J. M. J.
Phys. Chem. C 2015, 119, 12887−12895. (d) Shen, C.; Wang, P.; Lu, M.
J. Phys. Chem. A 2015, 119, 8250−8255.
(10) Aakeroy, C. B.; Wijethunga, T. K.; Desper, J. Chem. - Eur. J. 2015,
̈
31, 11029−11037.
(11) Jenkins, H. D. B.; Tudela, D.; Glasser, L. Inorg. Chem. 2002, 41,
2364−2367.
(12) Suce
2013.
́
ska, M. EXPLO5, v6.01; Brodarski Institute: Zagreb, Croatia,
(13) (a) Politzer, P.; Murray, J. S. Adv. Quantum Chem. 2014, 69, 1−30.
(b) Politzer, P.; Murray, J. S. Cryst. Growth Des. 2015, 15, 3767−3774.
(c) Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J.
Hazard. Mater. 2008, 151, 289−305.
(14) Politzer, P.; Murray, J. S. J. Mol. Model. 2015, 21, 25−36.
(15) (a) An, Q.; Liu, Y.; Zybin, S. V.; Kim, H.; Goddard, W. A. J. Phys.
Chem. C 2012, 116, 10198−10206. (b) Sharia, O.; Tsyshevsky, R.;
Kuklja, M. M. J. Phys. Chem. Lett. 2013, 4, 730−734. (c) Aluker, E. D.;
Krechetov, A. G.; Mitrofanov, A. Y.; Zverev, A. S.; Kuklja, M. M. J. Phys.
Chem. C 2012, 116, 24482−24486.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthesis, characterization data, calculation details, and
X-ray crystallographic files in CIF format for 1 CIF)
X-ray crystallographic files in CIF format for 3 (CIF)
X-ray crystallographic files in CIF format for 4 (CIF)
X-ray crystallographic files in CIF format for 8 (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX