10.1002/anie.202107820
Angewandte Chemie International Edition
COMMUNICATION
Reaction scalability: From 2 mmol – 100 mmol scale
O
N
O
O
Electrochemical
O-arylation
O
Boc
Electrochemical
O-arylation
N
N
N
SEM
N
SEM
Br
CF3
O
Br
O
Under air
70
71
Under air
68
69
Conditions: (S)-1-Boc-3-hydroxypyrrolidine (3.0 equiv.), Ni(dtbbpy)3Cl2 (10 mol %),
Conditions: 2,2,2-trifluroethanol (3.0 equiv.), Ni(dtbbpy)3Cl2 (10 mol %), DBU
DBU (2 equiv.), nBu4NBr (0.4 M), DMAc, rt, (+)C felt/(–)C felt, 4 V, 7 h
(2 equiv.), nBu4NBr (0.4 M), DMAc, rt, (+)C felt/(–)C felt, 6 V, 16 h
70% (20.2 g)
Continuous flow scaleup (100 mmol, 26.8 g)
Batch scaleup (60 mmol, 20.5 g)
61% (16.4 g)
ElectraSyn (2 mmol, 0.68 g)
65%
Figure 3. Electrochemical O-arylation performed on various scale from 2 mmol to 100 mmol. All yields are isolated yields.
[8]
Selected examples of Pd-catalyzed O-arylation of alcohols: a) G. Mann,
J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 13109 – 13110; b) M.
Palucki, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 3395
– 3396; c) G. Mann, J. F. Hartwig, J. Org. Chem. 1997, 62, 5413 – 5418;
d) K. E. Torraca, X. Huang, C. A. Parrish, S. L. Buchwald, J. Am. Chem.
Soc. 2001, 123, 10770 – 10771; e) A. V. Vorogushin, X. Huang, S. L.
Buchwald, J. Am. Chem. Soc. 2005, 127, 8146 – 8149; f) G. J. Withbroe,
R. A. Singer, J. E. Sieser, Org. Process Res. Dev. 2008, 12, 480-489; g)
E. J. Milton, J. A. Fuentes, M. L. Clarke, Org. Biomol. Chem. 2009, 7,
2645 – 2678; h) S. Gowrisankar, A. G. Sergeev, P. Anbarasan, A.
Spannenberg, H. Neumann, M. Beller, J. Am. Chem. Soc. 2010, 132,
11592 – 11598; i) X. Wu, B. P. Fors, S. L. Buchwald, Angew. Chem. Int.
Ed. 2011, 50, 9943 – 9947; Angew. Chem. 2011, 123, 10117 – 10121; j)
S. Gowrisankar, H. Neumann, M. Beller, Chem. Eur. J. 2012, 18, 2498 –
2502; k) P. E. Maligres, J. Li, S. W. Krska, J. D. Schreier, I. T. Raheem,
Angew. Chem. Int. Ed. 2012, 51, 9071 – 9074; Angew. Chem. 2012, 124,
9205 – 9208; l) N. C. Bruno, S. L. Buchwald, Org. Lett. 2013, 15, 2876 –
2879; m) C. W. Cheung, S. L. Buchwald, Org. Lett. 2013, 15, 3998 –
4001; n) T. M. Rangarajan, R. Singh, R. Brahma, K. Devi, R. P. Singh,
A. K. Prasad, Chem. Eur. J. 2014, 20, 14218 – 14225; o) T. M.
Rangarajan, R. Brahma, Ayushee, A. K. Prasad, A. K. Verma, R. P.
Singh, Tetrahedron Lett. 2015, 56, 2234 – 2237; p) R. S. Sawatzky, B.
K. V. Hargreaves, M. Stradiotto, Eur. J. Org. Chem. 2016, 2444 – 2449;
q) H. Zhang, P. Ruiz-Castillo, S. L. Buchwald, Org. Lett. 2018, 20, 1580
– 1583; r) S. D. Laffoon, V. S. Chan, M. G. Fickes, B. Kotecki, A. R. Ickes,
J. Henle, J. G. Napolitano, T. S. Franczyk, T. B. Dunn, D. M. Barnes, A.
R. Haight, R. F. Henry, S. Shekhar, ACS Catal. 2019, 9, 11691 – 11708;
s) H. Zhang, P. Ruiz-Castillo, A. W. Schuppe, S. L. Buchwald, Org. Lett.
2020, 22, 5369 – 5374; t) M. S. Mikus, C. Sanchez, C. Fridrich, J. F.
Larrow, Adv. Synth. Catal. 2020, 362, 430 – 436.
published thus far. It offers a useful alternative to classic SN2-
based methods for ether synthesis, and represents a practical,
scalable, and inexpensive gateway to such structures that does
not rely on precious metal additives or complex ligands.
Acknowledgements
This project was financially supported by National Science
Foundation Center for Synthetic Organic Electrochemistry CHE-
2002158, National Institutes of Health grant GM-118176, and
SIOC fellowship (postdoctoral fellowship to H.-J.Z.). We thank Dr.
D.-H. Huang and Dr. L. Pasternack (Scripps Research) for
assistance with NMR spectroscopy, to Dr. J. Chen, B. Sanchez,
and E. Sturgell (Scripps Automated Synthesis Facility) for
assistance with HRMS.
Keywords: Electrochemistry • O-Arylation • Coupling • Nickel •
Chemoselective
[1]
a) S. Enthaler, A. Company, Chem. Soc. Rev. 2011, 40, 4912 – 4924; b)
S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451 – 3479; c)
D.G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443 – 4458; d) G.
Evano, J. J. Wang, A. Nitelet, Org. Chem. Front. 2017, 4, 2480 – 2499.
E. Fuhrmann, J. Talbiersky, Org. Process Res. Dev. 2005, 9, 206 – 211.
K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. Kumar, Chem.
Rev. 2009, 109, 2551 – 2651.
[2]
[3]
[9]
Selected examples of Cu-catalyzed O-arylation of alcohols: a) M. Wolter,
G. Nordmann, G. E. Job, S. L. Buchwald, Org. Lett. 2002, 4, 973 – 976;
b) A. Shafir, P. A. Lichtor, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129,
3490 – 3491; c) H. Zhang, D. Ma, W. Cao, Synlett. 2007, 2, 243 – 246;
d) R. A. Altman, A. Shafir, A. Choi, P. A. Lichtor, S. L. Buchwald, J. Org.
Chem. 2008, 73, 284 – 286; e) J. Niu, H. Zhou, Z. Li, J. Xu, S. Hu, J. Org.
Chem. 2008, 73, 7814 – 7817; f) A. B. Naidu, G. Sekar, Tetrahedron Lett.
2008, 49, 3147–3151. g) A. B. Naidu, E. A. Jaseer, G. Sekar, J. Org.
Chem. 2009, 74, 3675 – 3679; h) J. Niu, P. Guo, J. Kang, Z. Li, J. Xu, S.
Hu, J. Org. Chem. 2009, 74, 5075 – 5078; i) D. Maiti, Chem. Commun.
2011, 47, 8340 – 8342; j) J. Huang, Y. Chen, J. Chan, M. L. Ronk, R. D.
Larsen, M. M. Faul, Synlett. 2011, 10, 1419 – 1422; k) Y, Guo, X.-M. Fan,
M. Nie, H.-W. Liu, D.-H. Liao, X.-D. Pan, Y.-F. Ji, Eur. J. Org. Chem.
2015, 4744 – 4755; l) Y. Zheng, W. Zou, L. Luo, J. Chen, S. Lin, Q. Sun,
[4]
[5]
[6]
“Nucleophilic Aromatic Substitution”: S. Caron, A. Ghosh, Practical
Synthetic Organic Chemistry, Wiley, Hoboken, 2011, pp. 237 – 253.
M. J. Meyers, F. M. Sverdrup, T. Caldwell, J. Oliva, WO 2020132004,
2020.
Selected reviews: a) C. Fischer, B. Koenig, Beilstein J. Org. Chem. 2011,
7, 59 – 74; b) I. P. Beletskaya, A. V. Cheprakov, Organometallics 2012,
31, 7753 − 7808; c) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016,
116, 12564 – 12649.
[7]
Selected reviews of the metal-catalyzed C-O cross-coupling: a) K.
Keerthi Krishnan, S. M. Ujwaldev, K. S. Sindhu, G. Anilkumar,
Tetrahedron 2016, 72, 7393 – 7407; b) S. Bhunia, G. G. Pawar, S. V.
Kumar, Y. W. Jiang, D. Ma, Angew. Chem. Int. Ed. 2017, 56, 16136 –
1679; Angew. Chem. 2017, 129, 16352 – 16397.
5
This article is protected by copyright. All rights reserved.