ORGANIC
LETTERS
2012
Vol. 14, No. 1
310–313
Multicomponent Synthesis of
6H-Dibenzo[b,d]pyran-6-ones and a Total
Synthesis of Cannabinol
Penchal Reddy Nandaluru and Graham J. Bodwell*
Department of Chemistry, Memorial University, St. John’s, NL, Canada, A1B 3X7
Received November 14, 2011
ABSTRACT
A multicomponent domino reaction that affords 6H-dibenzo[b,d]pyran-6-ones is reported. The overall transformation consists of six reactions:
Knoevenagel condensation, transesterification, enamine formation, an inverse electron demand DielsÀAlder (IEDDA) reaction, 1,2-elimination,
and transfer hydrogenation. Both the diene and dienophile for the key inverse electron demand DielsÀAlder (IEDDA) step are generated in situ by
secondary amine-mediated processes. In most cases, the yields (10À79%) are considerably better than those obtained using a stepwise process.
This methodology is employed in a concise total synthesis of cannabinol.
Multicomponent reactions (MCR) are highly valuable
transformations due to their ability to incorporate three or
more substrates into a single target in one operation.1 MCRs
typically achieve a substantial increase in molecular complex-
ity and offer opportunities for diversity-oritented synthesis.
They have proven to be valuable in drug discovery,2 as well as
in the total synthesis of natural products.3
Cannabinoids form a class of ∼70 natural products
that have been isolated from the plant Cannabis sativa.4
Cannabinol (1), Δ9-tetrahydrocannabinol (THC) (2), and
cannabinodiol (3) are prominent members of this family
(Figure 1). G-protein coupled cellular receptors, CB1 and
CB2, are the targets of the cannabinoids.5 While the CB1
receptor is widely present in the central nervous system
(CNS), especially the brain, the CB2 receptor is less widely
distributed. The CB2 receptor is present in organs and
tissues of immune-related systems, such as the spleen,
thymus, bone marrow, and B lymphocytes. Hence, can-
nabinoid agonists that selectively bind to one of the
receptors are desirable in that side effects associated with
the expression of the other receptor would be minimized.6
Several strategies for the synthesis of cannabinol (1)
and its derivatives have been reported. These can be
classified according to the key steps involved: (1) aroma-
tization of tetrahydrocannabinols,7 (2) a nucleophilic
aromatic substitution/lactonization/Grignard reaction
sequence,8 (3) a Suzuki coupling/lactonization/Grignard
reaction sequence,9 (4) Ru-catalyzed cyclotrimeriza-
tion followed by a Grignard reaction.10 The latter three
(6) (a) Marriot, K. S.; Huffman, J. W. Curr. Top. Med. Chem. 2008, 8,
187. (b) Pertwee, R. G. Pharmacol. Ther. 1997, 74, 129. (c) Raitio, K. H.;
Salo, O. M.; Nevalainen, T.; Poso, A.; Jarvinen, T. Curr. Med. Chem.
2005, 12, 1217. (d) Huffman, J. W. Curr. Pharm. Des. 2000, 6, 1323. (e)
Malan, T. P., Jr.; Ibrahim, M. M.; Deng, H.; Liu, Q.; Mata, H. P.;
Vanderah, T.; Porreca, F.; Makriannis, A. Pain 2001, 93, 239.
(7) (a) Adams, R.; Baker, B. R.; Wearn, R. B. J. Am. Chem. Soc.
1940, 62, 2204. (b) Ghosh, R.; Todd, A. R.; Wright, D. C. J. Chem. Soc.
1941, 137. (c) Meltzer, P. C.; Dalzell, H. C.; Razdan, R. K. Synthesis
1981, 985. (d) Rhee, M.-H.; Vogel, Z.; Barg, J.; Bayewitch, M.; Levy, R.;
Hanus, L.; Breuer, A.; Mechoulam, R. J. Med. Chem. 1997, 40, 3228.
(e) Mahadevan, A.; Siegel, C.; Martin, B. R.; Abood, M. E.; Beletskaya,
I.; Razdan, R. K. J. Med. Chem. 2000, 43, 3778.
(1) Reviews: (a) Tejedor, D.; Garcia-Tellado, F. Chem. Soc. Rev.
ꢀ
2007, 36, 484. (b) Zhu, J., Bienayme, H., Eds. Multicomponent Reactions;
Wiley-VCH: Weinheim, 2005. (c) Orru, R. V. A.; Hulme, C.; Oddon, G.;
€
Schmitt, P. Chem.;Eur. J. 2000, 6, 3321. (d) Domling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3168.
(2) (a) Blackwell, H. E. Curr. Opin. Chem. Biol. 2006, 10, 203.
€
€
(b) Domling, A. Chem. Rev. 2006, 106, 17. (c) Brauer, S.; Almstetter,
M.;Antuch, W.;Behnke,D.;Taube, R.;Furer, P.;Hess, S. J. Comb. Chem.
€
2005, 7, 218. (d) Ugi, I.; Werner, B.; Domling, A. Molecules 2003, 8, 53.
ꢀ
(3) Review: Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439.
(4) ElSohly, M. A.; Slade, D. Life Sci. 2005, 78, 539.
(5) (a) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.;
Bonner, T. I. Nature 1990, 365, 61. (b)Munro, S.;Thomas, K.L;Abu-Shaar,
M. Nature 1993, 365, 61.
ꢀ
(8) (a) Novak, J.; Salemink, C. A. Tetrahedron Lett. 1982, 23, 253.
(b) Hattori, T.; Suzuki, T.; Hayashizaka, N.; Koike, N.; Miyano, S. Bull.
Chem. Soc. Jpn. 1993, 66, 3034.
r
10.1021/ol2030636
Published on Web 12/15/2011
2011 American Chemical Society